UCIrvine

Pharmaceutical Sciences

School of Pharmacy &

EVALUATING ACUPUNCTURE USE IN ALLEVIATION OF CANCER-RELATED SYMPTOMS THROUGH THE NEUROTROPHIC PATHWAY: A SYSTEMATIC REVIEW OF HUMAN STUDIES

Reem Nasr¹, Daniella Chan¹, Dean Chan¹, Lucas Beppu¹, Fan-Ying Chan², Alexandre Chan¹

¹Department of Clinical Pharmacy Practice, University of California, Irvine, ²Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University

Introduction

- Acupuncture is widely used to manage cancer-related symptoms, yet its underlying mechanisms remain unclear.
- Brain-derived neurotrophic factor (BDNF) supports neuronal health and may be disrupted
- possible role in neuroprotection through the neurotrophic pathway.
- brain-derived neurotrophic factor (BDNF) levels in cancer patients. Given BDNF's role in protecting the brain from chemotherapy-related neurotoxicity, we aim to determine if acupuncture's symptom-relieving effects are linked to modulation of the neurotrophic pathway.

Methods

- Study Design: A comprehensive literature search was conducted using PubMed, Google Scholar, and **CINAHL**, including studies published in **English** and Chinese.
- **Inclusion Criteria:** Human clinical trials evaluating acupuncture for cancer-related symptoms—including insomnia, pain, neuropathy, cognitive impairment, fatigue, depression, anxiety, and physical function—that also reported **BDNF** biomarker
- **Data Extraction:** cancer type, intervention details, targeted symptoms, symptom assessment methods, and associations between BDNF changes and symptom outcomes. PRISMA **2020 guidelines** were followed to ensure methodological transparency, reproducibility, and completeness.

levels.

Analysis: A meta-analysis was conducted using Cochrane's **RevMan** online platform to statistically synthesize the relationship between acupuncture, BDNF levels, and symptom improvement, aiming to identify consistent trends and assess the overall strength of the evidence.

Characteristics

Study Design Single Arm

Sample Size

Cancer Types

Intervention

Insomnia

Acupuncture

Comparison

Limb Function

Source of BDNF

Serum Levels

Plasma Levels

Genetic Polymorphism

Intervention Effect on Symptom

BDNF change association with symptom

d: Acupuncture was combined with conventional treatment

treatment, or receiving conventional treatment

Intervention Effect on BDNF

Subjective

Objective

Positive

No effect

Increase

Decrease

No effect

Both

Symptoms Measurements

Cerebral Glioma

Multiple Melanoma

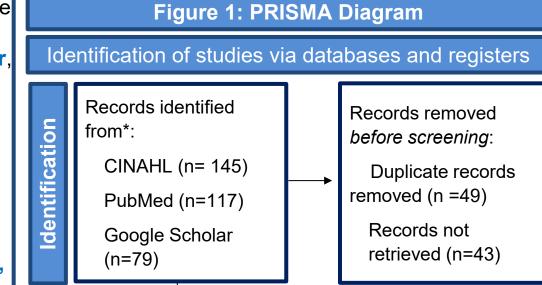
Combined Treatmentd

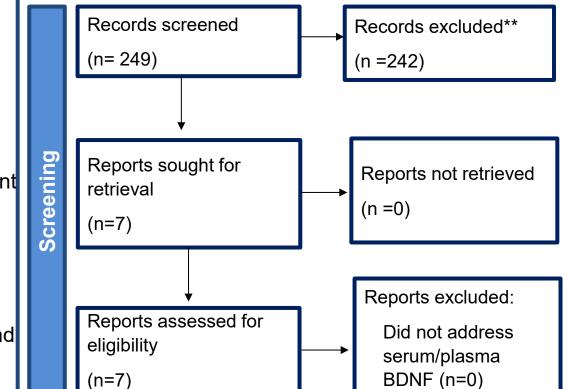
Symptoms Evaluated

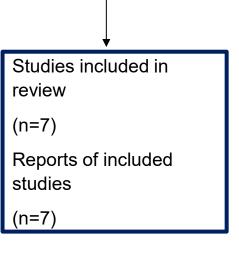
<50

≥50

Double-Arm

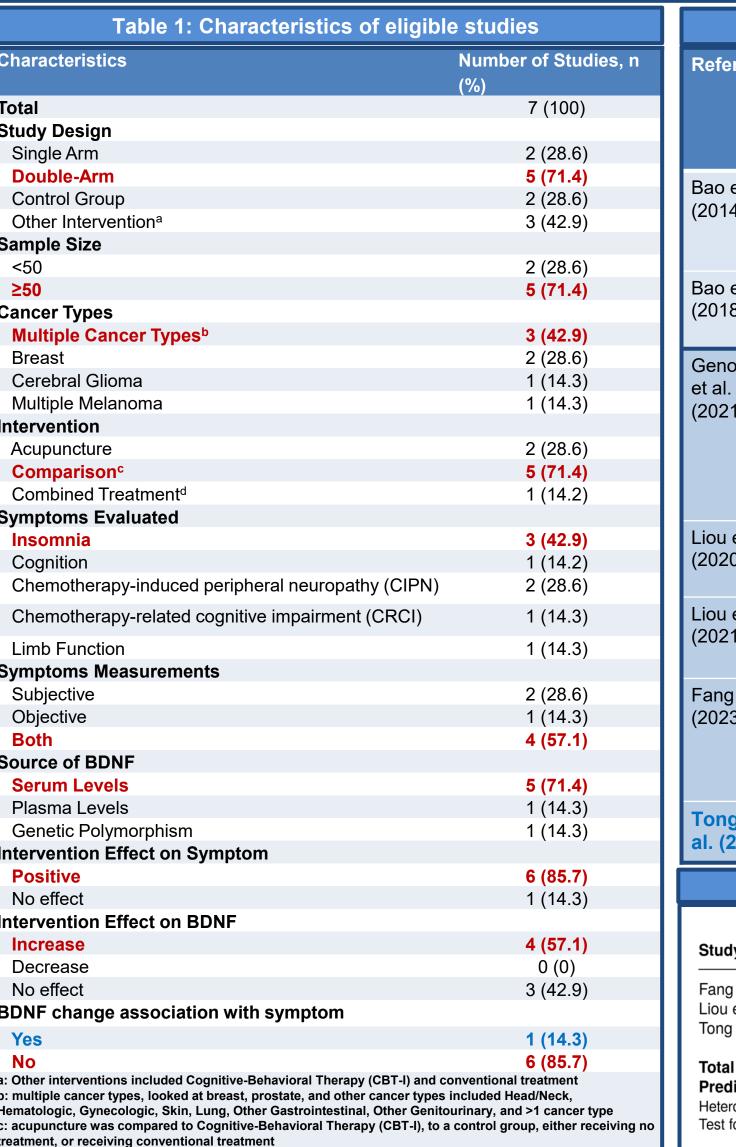

Control Group

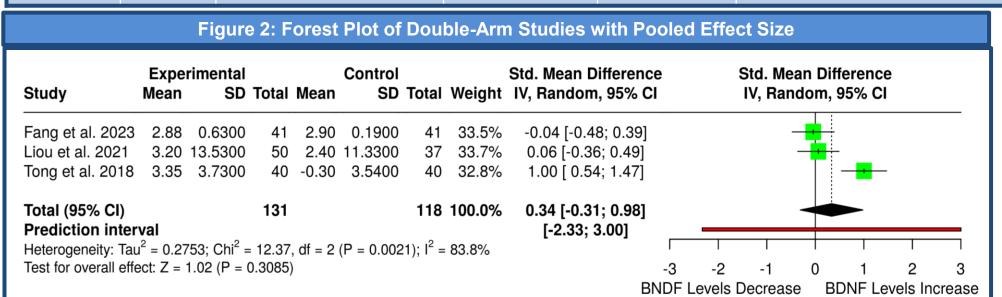

Other Interventiona


Multiple Cancer Typesb

Total

- Emerging evidence suggests acupuncture may influence BDNF levels, pointing to a
- Study Objective: This systematic review investigates whether acupuncture influences




Results

- Seven out of 249 articles met the inclusion criteria, including 539 participants in total. Most studies (71.4%) were double-arm trials with 50 or more participants. They used both subjective and objective tools to assess symptoms, with nearly half (42.9%) including patients with multiple cancer types, and 71.4% measured serum BDNF levels. (Table 1)
- Four studies (57.1%) reported increased BDNF levels after acupuncture, and six (85.7%) showed improvements in cancer-related symptoms. Only one study (14.3%) found a statistically significant link between BDNF increase and cognitive improvement (p < 0.05). (Table 1)
- Acupuncture improved symptoms such as insomnia, neuropathy, cognitive impairment, and cerebral dysfunction in 85.7% of studies, with improvements supported by both subjective and objective evaluations. (Table 2) BDNF increases were mainly observed in patients with insomnia and cognitive symptoms, with only Tong et al. (2018) showing a significant correlation between BDNF levels and symptom relief (p<0.05). (Table 2)
- A meta-analysis of three double-arm studies (131 experimental, 118 control) found no significant difference in BDNF levels between groups (SMD = 0.34; 95% CI: -0.31 to 0.98). (Figure 2)
- High heterogeneity was present (I² = 84%, p <0.01), though Tong et al. (2018) showed a strong and significant effect (Cohen's d > 0.8), suggesting a meaningful BDNF increase in the treatment group.(Figure 2)

Reference	Type of Study	Populations	Symptom(s) Evaluated	Source(s) of BDNF	Intervention effect on symptom outcome	Intervention effect on BDNF	BDNF change relation with symptom outcome
Bao et al. (2014)	Single Arm	Multiple myeloma (n=27)	BIPN	Serum	Symptom: Improved cognition (FACT-Cog) and neuropathy symptoms (NPS)	BDNF: No significant changes in BDNF levels	-
Bao et al. (2018)		Breast cancer patients (n=27)	CRCI	Plasma	Symptom: Neuropathy symptoms stabilized during intervention, and remained unchanged at 3-month follow-up (NPS)	BDNF: Minimal effect	-
Genovese et al. (2021)	Double Arm	Breast (n=41), Prostate (n=29), Colorectal (n=8), Other types (n=51), Multiple cancers (n=10)	Insomnia	Genetic polymorphism	More carriers of the COMT rs4680-A and NFKB2 rs1056890 CC genotypes responded to acupuncture; no gene-related differences were found for CBT-I response.	BDNF: No significant differences between BDNF rs6265 SNPs in treatment response	-
Liou et al. (2020)		Breast (n=31), prostate (n=19), other (n=49)	Insomnia	Serum	Symptom: Acupuncture improved cognition (BSRT, BADDS) and insomnia symptoms (ISI)	↑ BDNF	-
Liou et al. (2021)		Breast (n=27), prostate (n=20), other (n=40)	Insomnia		Symptom: Among those with low baseline BDNF: improved insomnia symptoms (ISI) and sleep time (CSD)	↑ BDNF	-
Fang et al. (2023)		Cerebral glioma patients (n=82)	Cerebral nerve function, hemorheology, cognitive, and limb function		Symptom: Combined treatment had improved cognition (MMSE, MoCA), motor function (FMA), and cerebral hemorheology symptoms (PSV, HSV, LSV)	↑ BDNF	-
Tong et al. (2018)		Breast cancer patients (n=80)	CRCI		Symptom: Improved CRCI symptoms (AVLT3, CDT, FACT-Cog)	↑ BDNF	+

Table 2: Summary of Acupuncture's Effects on Cancer-Related Symptoms and BDNF Across Clinical Studies

Conclusion

This study provides important insights into the effectiveness of acupuncture in improving cancer-related symptoms and the potential role of BDNF as a neurotrophic biomarker. While acupuncture showed benefits for symptoms like insomnia and neuropathy, the overall effect on BDNF levels remains inconclusive. Further research is needed to better understand the mechanisms and optimize the use of acupuncture in supportive care for cancer patients worldwide.