Improving Pain Management at Home: Integrating Patient-Reported Outcomes into a Mobile Application

Introduction

Cancer-related pain is a prevalent and often undertreated issue in outpatient settings, with 30-60% of patients reporting inadequate pain management (Jacobsen et al., 2010; Liang et al., 2011; Valeberg et al., 2008). Patient-Reported Outcomes (PROs) offer an effective way to assess pain in real time, supporting timely clinical decisions (Zhi et al., 2021; Kotronoulas et al., 2014).

To address these challenges, the Pain App was developed as a smartphone-based tool designed to empower cancer patients in self-reporting their pain levels, tracking medication usage, and distant monitoring side effects. The app incorporates four key modules: pain assessment, medication reminders, patient education, and visualization of PRO results (Figure 1).

Although mobile applications for pain management have demonstrated potential, there is limited evidence regarding their long-term effectiveness and patient acceptance in clinical practice (Jibb et al., 2017; Yang et al., 2019). This study aimed to assess the feasibility and impact of using institutiondeveloped Pain App to improve outpatients' cancer pain management.

Methods

This time-series study was conducted from January to September 2022 at a cancer hospital in Taiwan. A custom App was developed to allow patients to record and track their pain severity and functional scores at home, generating longitudinal reports accessible to healthcare providers. Participants were followed for 8 weeks, until pain issues were resolved or until they withdrew from the study. Nurses monitored entries and followed up as needed. Outcomes were analyzed using McNemar, and Proportion Z tests to evaluate pain trends and App usability.

Results

Out of 143 patients screened and 84 enrolled completed data collection across all five time points (T1–T5). The average age was 54.7 ± 9.17 years. Most had metastatic cancer (87.3%) and were undergoing active treatment—chemotherapy (50.8%) and targeted therapy (34.9%) being the most common. Pain medications included weak opioids (49.2%) and strong opioids (46.0%). The pain scores were collected at five time points: T1 (Day 1), T2 (Days 5–9), T3 (Days 12–16), T4 (Days 19–23), and T5 (Days 26–30). Mean pain scores were 2.79 ± 1.62 (T1), 2.92 ± 1.57 (T2), 2.87 ± 1.57 (T3), 2.98 ± 1.56 (T4), and 2.60 ± 1.52 (T5). Although McNemar tests showed no significant changes between baseline and T2–T5 when comparing "better" vs. "worse" statuses, the Z-test findings suggest a meaningful shift in the overall pain experience, with more participants maintaining or reaching pain relief over time (Table 1).

Participants reported that the app was user-friendly and appreciated its real-time feedback and educational content. Among its features, the most valued was the daily self-reporting of pain, which effectively prompted timely responses from nurses or physicians to address patients' pain-related concerns.

Table 1. A comparison between the percentage of patients with pain at baseline (Δ T2) and other time periods (Δ T3, Δ T4, Δ T5).

variables	better D (Z ^a ,p)	worse D (Z ^a ,p)	same good D (Z ^a ,p)	same bad D (Z ^a ,p)
Δ T3 -Δ T2	-4%(7.15,p<0.001)	-1%(2.14,p=0.032)	1.5%(1.24,p=0.215)	4.7%(3.01,p=0.003)
ΔT4-ΔT2	3.1%(3.74,p<0.001)	6.3%(6.93,p<0.001)	-6%(5.51,p<0.001)	-3%(2.04,p=0.041)
ΔΤ5-ΔΤ2	6.3%(6.93,p<0.001)	-4%(7.15,p<0.001)	4.7%(3.61,p<0.001)	-6%(4.12,p<0.001)

^a Proportion z-test. *p<0.05. **p<0.01. T1: day 1. T2: days 5-9. T3: days 12-16. T4: days 19-23. T5: days 26-30. ΔTn denotes the comparison between T1 and Tn.

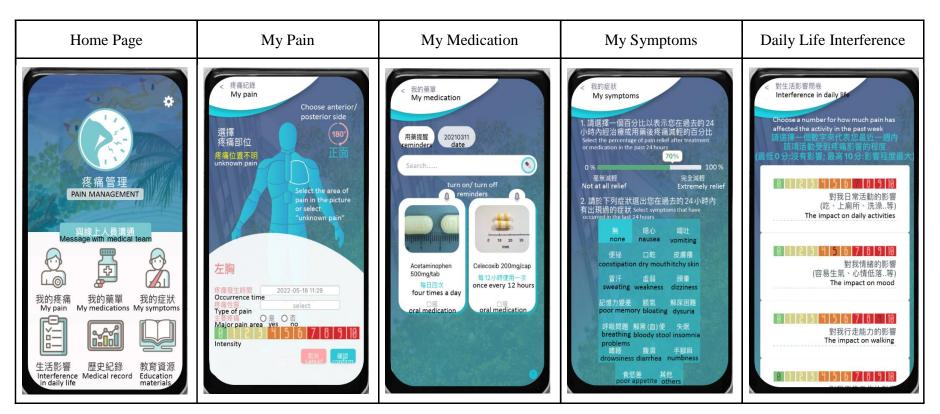


Figure 1. The user interface of the App includes Home Page, My Pain, My Medication, My Symptoms and Daily Life Interference.

Li-Lu Chang, RN, DNP; Meng-Kuan Chiang, RN, MSN Center for Advancement of Nursing Education, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan

• The proportion of patients classified as "better" increased by +6.3% (p < 0.001)

• The "same bad" group decreased by -6.0% (p < 0.001)

• The "same good" group increased by +4.7% (p < 0.001)

Conclusions

This study demonstrated that integrating a mobile application for patient-reported outcomes into cancer pain management is both feasible and well-received by patients. While average pain scores remained relatively stable, a statistically significant increase in the proportion of patients reporting pain improvement over time was observed.

The Pain App enabled real-time symptom tracking and nurse-initiated support, contributing to enhanced patient engagement and satisfaction. These findings support the clinical implementation of the App as a supportive tool for outpatient cancer pain management.

Future work should focus on routine clinical integration of the app and conducting larger-scale studies or randomized controlled trials to evaluate further its long-term impact on pain score reduction and self-management efficacy in diverse patient populations.

References

Jacobsen, R., et al. (2010). Psychological and behavioural predictors of pain outcomes. Scand J Caring Sci, 24(4), 781–790. Jibb, L. A., et al. (2017). Real-time pain management App for adolescents with cancer. Pediatr Blood Cancer,

64(10). https://doi.org/10.1002/pbc.26554

Zhi, W. I., et al. (2021). PROs in oncology: evidence and recommendations. Oncology, 35(1), 35–41.

JUNE 26-28 • 2025 SEATTLE 🔶 WASHINGTON, USA

Kotronoulas, G., et al. (2014). Value of PROs in cancer care. J Clin Oncol, 32(14), 1480-1501.

https://doi.org/10.1200/jco.2013.53.5948

Liang, S.-Y., et al. (2011). Impact of pain in Taiwanese oncology patients. Pain Manag Nurs, 12(4), 197-205.

Valeberg, B. T., et al. (2008). Self-reported adherence with analgesics. Clin J Pain, 24(7), 627–636.

Yang, J., et al. (2019). Pain App for discharged cancer patients. JMIR Mhealth Uhealth, 7(5), e12542.

mascc.org | isoo.world | @CancerCareMASCC | #MASCC25