

Evaluation of Large Language Models in Tailoring Educational Content for Underserved Cancer Survivors and Their Caregivers

Darren Liu^{1,2}, Xiao Hu^{1,2,3}, Canhua Xiao^{1,4}, Jinbing Bai^{1,4}, Zahra A. Barandouzi^{1,4}, Stephanie M. Lee¹, Caitlin I. Webster¹, La-Urshalar Brock^{1,4}, Lindsay J. Lee⁵, Delgersuren Bold^{1,2}, Yufen Lin^{1,4}

NELL HODGSON WOODRUFF SCHOOL OF NURSING

¹Nell Hodgson Woodruff School of Nursing, Emory University ²Center for Data Science, Emory University ³The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology ⁴Winship Cancer Institute, Emory University, ⁵Department of Medicine, University of Florida

INTRODUCTION

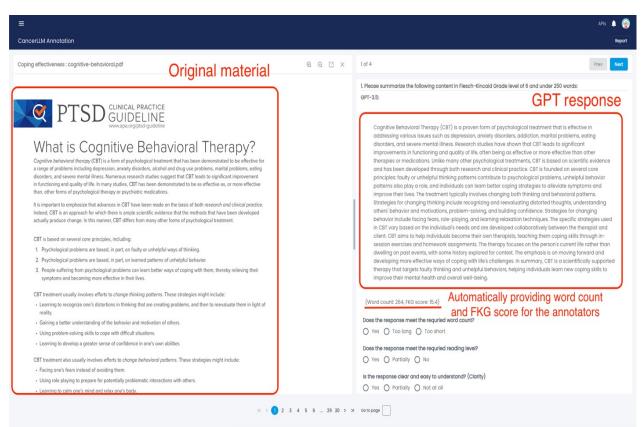
- Underserved cancer survivors and their caregivers face a disproportionately increased risk of symptom burden from cancer and its treatments.
- Large language models (LLMs) offer researchers an opportunity to develop educational materials tailored to these populations.
- This study aimed to evaluate different LLMs in tailoring educational content for underserved cancer survivors and their caregivers.

METHODS

Data sources:

- Education materials are from the national guidelines (e.g., National Cancer Institute, National Comprehensive Cancer Network).
- We selected **30 distinct topics** such as fatigue, depression, anxiety, physical activity, coping skills, and more.

Models:

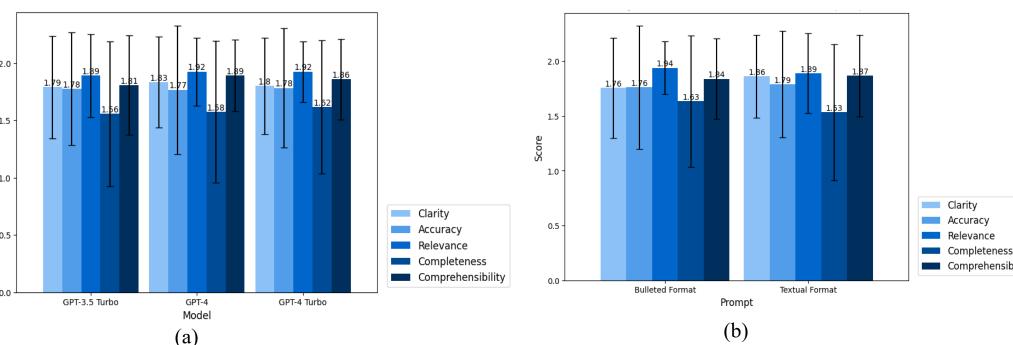

GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo were utilized through Microsoft Azure OpenAI API to generate tailored content.

Prompts:

- At a low reading level (FKG \leq 6);
- At a word limit of 250;
- In both textual and bulleted formats;
- Providing Spanish and Chinese translations for each topic.

Annotation:

- A panel of **nine oncology experts**, comprising four oncology professors, four doctoral students, and one medical resident.
- Each expert was assigned 10 topics to evaluate based on seven criteria and was required to provide feedback on the errors.


Figure 1. Screenshot of the Cohort Adjudication and Data Annotation application

• ANOVA or Chi-square analyses were employed to compare differences among the various GPT models and prompts.

Table 1. Performance of All Models, Prompts on the Summarization Tasks GPT-3.5 Turbo GPT-4 **GPT-4** Turbo Textual **Bullet** Textual **Bullet** Textual Bullet Promot

RESULTS

Prompt	Format	Points	Format	Points	Format	Points
Word Limit (%)	0.467	0.967	0.917	0.767	0.517	0.817
Reading Level (%)	0.183	0.283	0.217	0.217	0.533	0.317
Accuracy	1.767±0.500	1.783±0.49	1.800±0.480	1.733±0.634	1.800±0.48	1.767±0.5
Clarity*	1.833±0.418	1.750±0.474	1.867±0.389	1.800±0.403	1.883±0.324	1.717±0.4
Relevance	1.883±0.415	1.900±0.303	1.883±0.372	1.967±0.181	1.900±0.303	1.950±0.2
Completeness	1.533±0.623	1.583±0.645	1.483±0.624	1.667±0.601	1.583±0.619	1.650±0.5
Comprehensibility	1.817±0.469	1.800±0.403	1.883±0.324	1.900±0.303	1.900±0.303	1.817±0.
Total Score	8.833±1.748	8.817±1.546	8.917±1.239	9.067±1.26	9.067±1.087	8.900±1.2
Spanish Translation (%)	0.933		0.967		1	
Chinese Translation (%)	0.767		0.867		0.800	

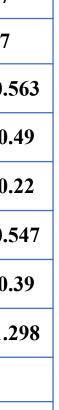
Figure 2. Average Scores on Each Criterion Between: (a) Different Models; (b) Different Prompts.

- 74.2% (n=360) adhering to the specified word limit and achieving an average quality assessment score of 8.933 out of 10
- Achieving an accuracy of 88.9% for Spanish and 81.1% for Chinese translations
- Errors: inaccurate scope, expression, definition, meaningless points

DISCUSSION

- Overall, it is proven that LLMs are highly effective in tailoring, condensing, and translating educational content for underserved cancer patients and their caregivers.
- The findings from this study can inform the development and implementation of interventions in cancer symptom management and health equity.

CONCLUSION


• This study highlights the application of LLMs in cancer care and education while acknowledging their potential limitations.

ACKNOWLEDGMENT

The study was supported by the Oncology Nursing Foundation Research Grant (2022 RE03).

yufen.lin@emory.edu

Comprehensibilit

