

FURTHER IN VITRO STUDIES ON THE PROTECTIVE EFFECTS OF A NOVEL PEPTIDE HYDROLYSATE, SPH1, AGAINST 🥒 MUSCLE ATROPHY USING PRIMARY NORMAL HUMAN SKELETAL MYOBLASTS (HSkM) & PRELIMINARY CHARACTERISATION OF GLP2 AGONIST ACTION TO SUPPORT GI FUNCTION

Bomi Framroze, Christian Bjerknes and Crawford Currie - Hofseth BioCare ASA, Ålesund, Norway

CONCLUSIONS

The soluble protein hydrolysate, sph1, showed further in vitro evidence of good protection against the atrophy of primary normal human Skeletal Myoblasts (HSkM) supporting continued development of sph1 as a medical nutrition for muscle atrophy produced by cancer cachexia. Sph1 also showed significant GLP2 agonist activity which may indicate a potential to support nutrient absorption capacity of the small intestine.

1. Development Of A Natural Protein Hydrolysate Supplement containing Peptidyl Inhibitors of Activin A And Myostatin To Alleviate Cancer Cachexia. Bomi Framroze, Crawford Currie and Erland Hermansen; Hofseth BioCare, Alesund,, Norway. MASCC 2023.

ABSTRACT

The modulation of muscle metabolism pathways is an appealing target for cachexia management. Myostatin is a key factor in inducing skeletal muscle atrophy via myotube atrophy. We previously reported that sph1 contains peptidyl inhibitors of myostatin in a HepG2 cell assay ⁽¹⁾. Expanding on our earlier results we show that in primary normal human skeletal myoblasts (HSkM) sph1 provides a protective effect against (i) HSkM cell myotube atrophy induced by C26 conditioned culture medium (CCM) and (ii) TNFα-induced HSkM atrophy, which we selected for models of cancer-induced muscle cell atrophy. We also show preliminary findings of screening for GLP2 agonist activity in sph1 which could provide a means to support nutrient absorption in the small intestine.

METHODS

Models of cancer-induced muscle cell atrophy

- 1. sph1 was produced by tailored enzymatic hydrolysis of Atlantic Salmon (salmo salar) offcuts.
- 2. HSkM cell viability was assayed by exposure to different concentrations of sph1 with sulforhodamine B at 570 nm.
- 3. Differentiated HSkM cells were treated with dM, dM+CCM, dM+CCM+sph1. Myostatin expression and reversal of the CCM deactivation of MyHC, MyoD, and MyoG expression was measured using western blots.
- 4. Differentiated HSkM cells were treated with TNF α and TNF α +sph1 and the expression of proteolysis-related Atrogin-1 and MuRF-1 was measured.

Screening for GLP2 agonist activity

1. A proprietary fluorescent biosensor assay (Innoprot) was utilised to measure cellular response in a GLP2 receptor cell line, via fluorescence intensity, mediated by cAMP signalling following activation of the GLP2 receptor by sph1 at 0.1mg/ml, 1mg/ml and10mg/ml. GLP2 at 1µm (~0.004mg/ml) was used as positive control.

RESULTS

- 1. HSkM cells showed 100% viability up to 500µg/ml dose of sph1
- 2. CCM increased the protein level of myostatin as compared to the control group (p < 0.05) and sph1 reversed the protein level increase induced by CCM at 500 μ g/ml dose (p < 0.05). Figure 1
- 3.CCM significantly decreased MyHC, MyoD and MyoG expression levels in HSkM as compared to the control (p<0.05). sph1 reversed the decrease in expression of all three proteins (p<0.05). Figure 2
- 4. TNFa significantly increased Atrogin-1 and MuRF-1 expression levels in HSkM as compared to the control (p<0.01). sph1 reversed the increase in expression of both proteolysis proteins (p<0.01). Figure 3
- 5. sph1 showed a significant increase of GLP2R activity at 1mg/ml and 10mg/ml respectively compared to negative control (with GLP2 agonist positive control showing the largest increase). Figure 4

REFERENCES