

Frailty as a Marker of Physiological Aging and its Association with Neurocognitive Outcomes in Survivors of Childhood Cancer

School of Pharmacy CUHK

Yin Ting Cheung¹, Chung Tin Ma¹, Wing Chi Ho¹, Janessa Chou¹, Michael Can Heng Li¹, Teddy Lam¹
Samantha Lee², Kirsten Ness³, Chi Kong Li^{2,4}, Kenneth To¹

¹School of Pharmacy, ⁴Department of Paediatrics; -- Faculty of Medicine, The Chinese University of Hong Kong

²Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital; ³Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital

Background Results Results

- Emerging evidence is supporting the role of "premature aging" in cancer-related neurocognitive impairment
- While most studies on aging and neurocognitive outcomes are conducted in the adult cancer populations, few studies have investigated the physiological markers of aging in childhood cancer survivors

Objectives

To: evaluate the association of frailty (a physiological aging marker) and neurocognitive outcomes among survivors of childhood cancer

Methods

- This cross-sectional study was conduced at the Long-term Follow-up clinics of an academic hospital in Hong Kong
- Inclusion criteria:
- Adult survivors (aged ≥18 years old) at recruitment
- Diagnosed with cancer before 18 years old
- Had survived at least 5 years post-cancer diagnosis
- **Exclusion criteria:**
- Pre-existing developmental conditions (e.g. autism, Down syndrome), or non-cancer conditions that affect cognitive function (e.g. traumatic brain injury)
- Neurocognitive outcomes:
- Attention (CPT-III)
- Visual memory (Modified Taylor Complex Figure)
- Motor-processing speed (Grooved Pegboard)
- Visuomotor processing speed (TMT-A)
- Cognitive flexibility (TMT-B)
- Cognitive complaints (CCSS-Neurocognitive Questionnaire)
- Frailty:
- Survivors underwent a clinical evaluation and bioelectrical impedance analysis
- They were classified as "prefrail" or "frail" based on the Fried's frailty phenotype criteria (Figure 1)
- Asian or local thresholds for used to define "frailty" for each criterion
- Covariates:
- Chronic health conditions (CHC), cancer diagnoses, age at diagnosis, treatment modalities (extracted from electronic health records)
- Statistical analysis:
- General linear modeling to evaluate the association of neurocognitive T-scores with (1) frailty ("frail" versus "prefrail"/"non-frail") and (2) T/S ratio (continuous variable)
- > Adjusted for age, sex and clinical/treatment covariates

- This study recruited 112 survivors of childhood cancer (Table 1) **Table 1: Clinical Characteristics** Age (years) 28.4 [SD=6.9] **Sex:** Male 57 (50.9%) Age at follow-up 28.8 [SD=6.9] Age at diagnosis (years) 9.1 [SD=5.4] **Years from diagnosis** (years) 18.9 [SD=7.9] Cancer diagnoses Hematological cancers 67 (59.8%) 5 (4.5%) Solid tumor Non-CNS solid tumor 40 (35.7%) Chronic health conditions (CHC) 46 (41.1%) 14 (12.5%) Endocrine/Metabolic Cardiovascular 15 (13.4%) 9 (8.0%) Vision 7 (6.3%) Pulmonary
 - Figure 1: Classification of "Frailty" Based on the Fried Criteria

Half of the cohort were classified as "pre-frail" or "frail" (Figure 1)

As compared to "non-frail"/"pre-frail" survivors, "frail" survivors were

more likely to have developed a CHC (53.8% versus 25.0%, P=0.034)

and were younger at cancer diagnosis (6.5 versus 9.5 years; P=0.037).

Based on the Fried Criteria, participants were considered

- * "Pre-frail" if they had fulfilled 2 of the following criteria:
- ^ "Frail" if they had fulfilled \geq 3 of the following criteria:
- (1) low lean muscle mass based on bioelectrical impedance analysis (appendicular skeletal muscle index $\leq 7.0 \text{kg/m}^2$ for males, $\leq 5.7 \text{ kg/m}^2$ for females Asian Working Group for Sarcopenia) (2) exhaustion (Multidimensional Fatigue Scale *T*-score ≤ 1.3 SDs below population mean) (3) low energy expenditure (reported \leq two sessions of 20 minutes of light physical activity [3 METs] per week)
- (4) Slowness (≥ 7 seconds to walk 15 feet for women < 159 cm and men < 173 cm tall or ≥ 6 seconds to complete the distance for women ≥ 159 cm tall and for men ≥ 173 cm tall)
- (5) weakness (hand-held dynamometer and body mass index–specific cut points for sitting hand-grip strength)

"Frail" survivors performed worse than "non-frail"/"pre-frail" survivors on multiple cognitive measures (Figure 2)

Figure 2: Comparison of cognitive measures between "frail" survivors and "non-frail/pre-frail" survivors

Models are adjusted for age, sex and clinical/treatment covariates. A higher T-score is indicative of worse neurocognitive outcome.

• "Frail" survivors also reported more cognitive problems than "non-frail"/"pre-frail" survivors (Table 2)

Table 2: Association between frailty and self-reported cognitive problems on the CCSS-NCQ.

problems on the cc33-14cq.						
	Task efficiency		Organization		Memory	
	Est.	Р	Est.	P	Est.	P
Frail" survivors ef: Non-frail/pre-frail	2.62	0.003	1.89	0.029	1.80	0.003

Conclusion

- Aging processes might play a mechanistic role in neurocognitive impairment among childhood cancer survivors
- Future work should investigate targeted interventions that mitigate physiological and cognitive aging, such as exercise and lifestyle modification programs

Corresponding author: Dr. Yin Ting Cheung, Email: yinting.cheung@cuhk.edu.hk
Funded by the Hong Kong Research Grant Council, General Research Fund (Ref: 14605421)