CHEMOTHERAPY-INDUCED HAND FOOT SYNDROME - COMPARATIVE EFFICACY AND SAFETY OF PHARMACOLOGICAL PROPHYLAXIS: BAYESIAN NETWORK META-ANALYSIS Mathan Kumar Ramasubbu¹, Rituparna Maiti¹, Debasish Hota¹, Saroj Kumar Das Majumdar², Anand Srinivasan¹ Department of Pharmacology¹ and Radiation Oncology², All India Institute of Medical Sciences, Bhubaneswar, Odisha, India ### Introduction Hand-foot syndrome (HFS) is one of the most common toxicities experienced by patients receiving systemic chemotherapy agents such as capecitabine and multi-kinase inhibitors such as sorafenib. Several randomized controlled trials (RCT) have investigated the efficacy and safety of prophylactic agents such as pyridoxine, celecoxib, urea cream, and cystine/theanine in managing HFS. This network meta-analysis evaluated data from high-quality trials to provide strong evidence in forming recommendations to prevent systemic cancer therapy-induced HFS. Our objective is to examine the comparative efficacy and safety of interventions for preventing systemic chemotherapy-induced hand-foot syndrome (HFS) in cancer patients. ## Methods We searched PubMed, Embase, and clinical trial registries for RCTs of interventions for preventing HFS. Bayesian network meta-analysis (NMA) was performed to estimate the odds ratio (OR) with 95% credible intervals (CrI) from both direct and indirect evidence. The outcome measures were the incidence of HFS (grade \geq 1) and moderate to severe HFS (grade \geq 2). Adverse drug reactions were discussed descriptively. Figure 1) PRISMA flow chart of the search strategy Figure 2 b) Network graph of the prevention of all grades of HFS (grade ≥ 1). # Rank probabilities of various interventions based on SUCRA score for prevention of all grades of HFS (≥1 grade) 0.30 (0.12, 0.71) 0.87 (0.25, 2.9) 1.5 (0.26, 9.5) 1.0 (0.23, 4.9) 0.92 (0.41, 1.9) 0.23 (0.044, 1.2) 0.48 (0.10, 2.2) 0.93 (0.37, 2.3) 0.63 (0.23, 1.8) 0.89 (0.17, 4.3) 0.71 (0.25, 2.2) Figure 3 b) Forest plot showing the odds ratio (95 % CrI) in terms | | Interventions | SUCRA | |----|----------------------------------|--------| | | urea_cream_10 % | 0.8649 | | | celecoxib_200mgBD | 0.7366 | | | Lcystine_700mg + Ltheanine_280mg | 0.7211 | | | pyridoxine_200mgOD | 0.6028 | | | celecoxib_400mgBD | 0.5154 | | | pyridoxine_100mgBD | 0.4402 | | | placebo | 0.4153 | | | pyridoxine_60mgOD | 0.4084 | | | pyridoxine_50mgTID | 0.3922 | | | urea_cream_20 % | 0.3466 | | | pyridoxine_100mgOD | 0.2847 | | | urea_cream_12% + lactic_acid_6% | 0.2712 | | шш | | | ### **Results** A total of 15 RCTs with 2715 patients with 12 prophylactic strategies were included. The analysis showed that only celecoxib could significantly prevent the incidence of moderate to severe HFS (grade \geq 2) (OR 0.29, 95% CrI 0.13 to 0.68). But none of the interventions could prevent the incidence of HFS (grade \geq 1). ### **Conclusion** Only celecoxib (200 mg BD) showed significant prevention of moderate to severe HFS incidence. Pyridoxine (400 mg OD) and urea cream (10%) must be further evaluated in larger randomized trials as they have high SUCRA scores. ### References - 1) Nikolaou V, Syrigos K, Saif MW. Incidence and implications of chemotherapy related hand-foot syndrome. https://doi.org/101080/1474033820161238067 2016;15:1625–33. doi:10.1080/14740338.2016.1238067 - 2) Hutton B, Catalá-López F, Moher D. [The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA]. Med Clin (Barc) 2016;147:262–6. doi:10.1016/J.MEDCLI.2016.02.025 - 3) CRAN Package gemtc. https://cran.r-project.org/web/packages/gemtc/index.html (accessed 29 Oct 2022). - 4) Schwarzer G, Carpenter JR, Rücker G. Meta-Analysis with R. Published Online First: 2015. doi:10.1007/978-3-319-21416-0 - 5) Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366. doi:10.1136/BMJ.L489