

CHEMOTHERAPY-INDUCED HAND FOOT SYNDROME - COMPARATIVE EFFICACY AND SAFETY OF PHARMACOLOGICAL PROPHYLAXIS: BAYESIAN NETWORK META-ANALYSIS

Mathan Kumar Ramasubbu¹, Rituparna Maiti¹, Debasish Hota¹, Saroj Kumar Das Majumdar², Anand Srinivasan¹

Department of Pharmacology¹ and Radiation Oncology², All India Institute of Medical Sciences, Bhubaneswar, Odisha, India

Introduction

Hand-foot syndrome (HFS) is one of the most common toxicities experienced by patients receiving systemic chemotherapy agents such as capecitabine and multi-kinase inhibitors such as sorafenib. Several randomized controlled trials (RCT) have investigated the efficacy and safety of prophylactic agents such as pyridoxine, celecoxib, urea cream, and cystine/theanine in managing HFS. This network meta-analysis evaluated data from high-quality trials to provide strong evidence in forming recommendations to prevent systemic cancer therapy-induced HFS. Our objective is to examine the comparative efficacy and safety of interventions for preventing systemic chemotherapy-induced hand-foot syndrome (HFS) in cancer patients.

Methods

We searched PubMed, Embase, and clinical trial registries for RCTs of interventions for preventing HFS. Bayesian network meta-analysis (NMA) was performed to estimate the odds ratio (OR) with 95% credible intervals (CrI) from both direct and indirect evidence. The outcome measures were the incidence of HFS (grade \geq 1) and moderate to severe HFS (grade \geq 2). Adverse drug reactions were discussed descriptively.

Figure 1) PRISMA flow chart of the search strategy

Figure 2 b) Network graph of the prevention of all grades of HFS (grade ≥ 1).

Rank probabilities of various interventions based on SUCRA score for prevention of all grades of HFS (≥1 grade)

0.30 (0.12, 0.71)

0.87 (0.25, 2.9)

1.5 (0.26, 9.5)

1.0 (0.23, 4.9)

0.92 (0.41, 1.9)

0.23 (0.044, 1.2)

0.48 (0.10, 2.2)

0.93 (0.37, 2.3)

0.63 (0.23, 1.8)

0.89 (0.17, 4.3)

0.71 (0.25, 2.2)

Figure 3 b) Forest plot showing the odds ratio (95 % CrI) in terms

	Interventions	SUCRA
	urea_cream_10 %	0.8649
	celecoxib_200mgBD	0.7366
	Lcystine_700mg + Ltheanine_280mg	0.7211
	pyridoxine_200mgOD	0.6028
	celecoxib_400mgBD	0.5154
	pyridoxine_100mgBD	0.4402
	placebo	0.4153
	pyridoxine_60mgOD	0.4084
	pyridoxine_50mgTID	0.3922
	urea_cream_20 %	0.3466
	pyridoxine_100mgOD	0.2847
	urea_cream_12% + lactic_acid_6%	0.2712
шш		

Results

A total of 15 RCTs with 2715 patients with 12 prophylactic strategies were included. The analysis showed that only celecoxib could significantly prevent the incidence of moderate to severe HFS (grade \geq 2) (OR 0.29, 95% CrI 0.13 to 0.68). But none of the interventions could prevent the incidence of HFS (grade \geq 1).

Conclusion

Only celecoxib (200 mg BD) showed significant prevention of moderate to severe HFS incidence. Pyridoxine (400 mg OD) and urea cream (10%) must be further evaluated in larger randomized trials as they have high SUCRA scores.

References

- 1) Nikolaou V, Syrigos K, Saif MW. Incidence and implications of chemotherapy related hand-foot syndrome. https://doi.org/101080/1474033820161238067 2016;15:1625–33. doi:10.1080/14740338.2016.1238067
- 2) Hutton B, Catalá-López F, Moher D. [The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA]. Med Clin (Barc) 2016;147:262–6. doi:10.1016/J.MEDCLI.2016.02.025
- 3) CRAN Package gemtc. https://cran.r-project.org/web/packages/gemtc/index.html (accessed 29 Oct 2022).
- 4) Schwarzer G, Carpenter JR, Rücker G. Meta-Analysis with R. Published Online First: 2015. doi:10.1007/978-3-319-21416-0
- 5) Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366. doi:10.1136/BMJ.L489