

Identification of Lipidomics Predictors of Sensory Paclitaxel-induced Peripheral Neuropathy

Ciao-Sin Chen, Alla Karnovsky, N Lynn Henry, Kathleen A Stringer, A Daniel L Hertz 1,3

¹ Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA.

² Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.

³ Rogel Cancer Center, University of Michigan Health, Ann Arbor, Michigan, USA.

⁴ NMR Metabolomics Laboratory, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA.

Background

- Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting side effect of paclitaxel in patients with breast cancer. 1,2
- Prior studies suggest some lipid levels can indicate CIPN severity,³⁻⁵ including paclitaxel-induced PN.³

Objective

 Discover pre-treatment lipids that are associated with higher severity of paclitaxel-induced PN.

Methods

- Patient cohort: NCT02338115 is an observational study of adult female patients with early-stage breast cancer scheduled to receive paclitaxel 80 mg/m² 1-hour infusion weekly for 12 doses.⁶
- Patient selection: Patients did not have pre-existing severe peripheral neuropathy and received at least 25% of the scheduled treatment (3 doses).
- Sensory CIPN measurement: CIPN8 sensory subscale of the CIPN20 patient-reported outcome questionnaire weekly before infusions.⁷
- Lipidomics measurement: 36 patients had end-offirst-infusion plasma samples available as pseudo baseline. 854 lipids measured by untargeted shotgun lipidomics via LC-MS/MS. Identified by LipidBlast. Quantified by Multiquant. Imputed using K-nearest neighbors. Normalized using internal standards and then log₂ transformed.⁸

Table 1. Clinical Data of Analyzed Patients (n=36)

<u> </u>
N (%) or Mean [range]
53 [28, 71]
33 (92%)
27 [19, 41]
11 [6, 12]
10 (29%)
10 (29%)
20 (56%)

Statistical analyses:

false discovery rates (FDR) <10% to **Candidate** Univariate Lipids **Analyses** Max CIPN8 ~ lipid ± baseline CIPN8 Candidate Network Lipid **Analysis** Networks

Prediction

Modeling

Candidate

Lipid

Models

Group least absolute shrinkage and selection operator (LASSO) with 5-fold repeated cross validation to reduce overfitting¹⁰

Linear regression with

correct for multiple comparisons

Debiased sparse partial

correlation (DSPC)⁹

Results

Table 2. 29 Lipids Associated with Higher and Lower CIPN Severity

Sphingolipids	Phospholipids					Glycerolipids
Cer 36:0;02	LPC 19:0	PC 36:4	LPE 17:0	PE 38:2	PI 34:2	DG 34:2
Cer 36:1;O2	LPC 20:0	PC 37:2	LPE 22:6	PE O-34:2		DG 36:2
Cer 40:1;02	LPC 22:5	PC O-34:3		PE O-34:3		TG 52:2
SM 43:1;02		PC O-36:2		PE O-35:3		
SM 42:6;02		PC O-37:5		PE O-36:3		
SM 44:3;02				PE O-38:4		
				PE O-40:6		
				PE O-40:7		
				PE O-42:7		

Figure 1. 9 Candidate Lipid Networks (FDR<25%)

Figure 2. A predictive model composed of networks of phosphatidylethanolamines (PE) and long-chain ceramides (Cer) demonstrated good prediction performance. (R², coefficient of determination; RMSE, root mean square error)

Conclusion

 Our findings suggest that pretreatment levels of sphingolipids, phospholipids, and glycerolipids may predict the severity of paclitaxel-induced PN and identify patients at higher risk of severe CIPN.

Future Work

- Discover and validate lipid signatures of CIPN risk in larger patient cohorts, such as SWOG 1714.
- Investigate whether personalizing treatment based on CIPN risk, as predicted by lipid signatures, can reduce CIPN and improve treatment outcomes in patients with breast cancer.
- Examine the mechanistic pathways between these lipids and CIPN occurrence or severity.

References

- Seretny, M., et al. "Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis." Pain (2014) 155(12):
- Speck, R. M., et al. "Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer." J Oncol Pract (2013) 9(5): e234-
- Kramer, R., et al. "Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy." Faseb j (2015) 29(11): 4461-4472.
- Maekawa, K., et al. "Serum lipidomics for exploring biomarkers of bortezomib therapy in patients with multiple myeloma." Cancer Sci (2019) 110(10): 3267-3274.
- Verma, P., et al. "A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy." Sci Rep (2020) 10(1): 9659.
- Hertz, D. L., et al. "Paclitaxel Plasma Concentration after the First Infusion Predicts Treatment-Limiting Peripheral Neuropathy." Clin Cancer Res (2018) 24(15): 3602-3610. Lavoie Smith, E. M., et al. "Assessing patient-reported peripheral neuropathy: the
- reliability and validity of the European Organization for Research and Treatment of Cancer QLQ-CIPN20 Questionnaire." Qual Life Res (2013) 22(10): 2787-2799. Afshinnia, F., et al. "Lipidomics and Biomarker Discovery in Kidney Disease." Semin
- Nephrol (2018) 38(2): 127-141. Basu, S., et al. "Sparse network modeling and metscape-based visualization methods
- for the analysis of large-scale metabolomics data." Bioinformatics (2017) 33(10): 1545-1553.
- 10. Iyer, G. R., et al. "Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations." Metabolites (2020) 10(12).