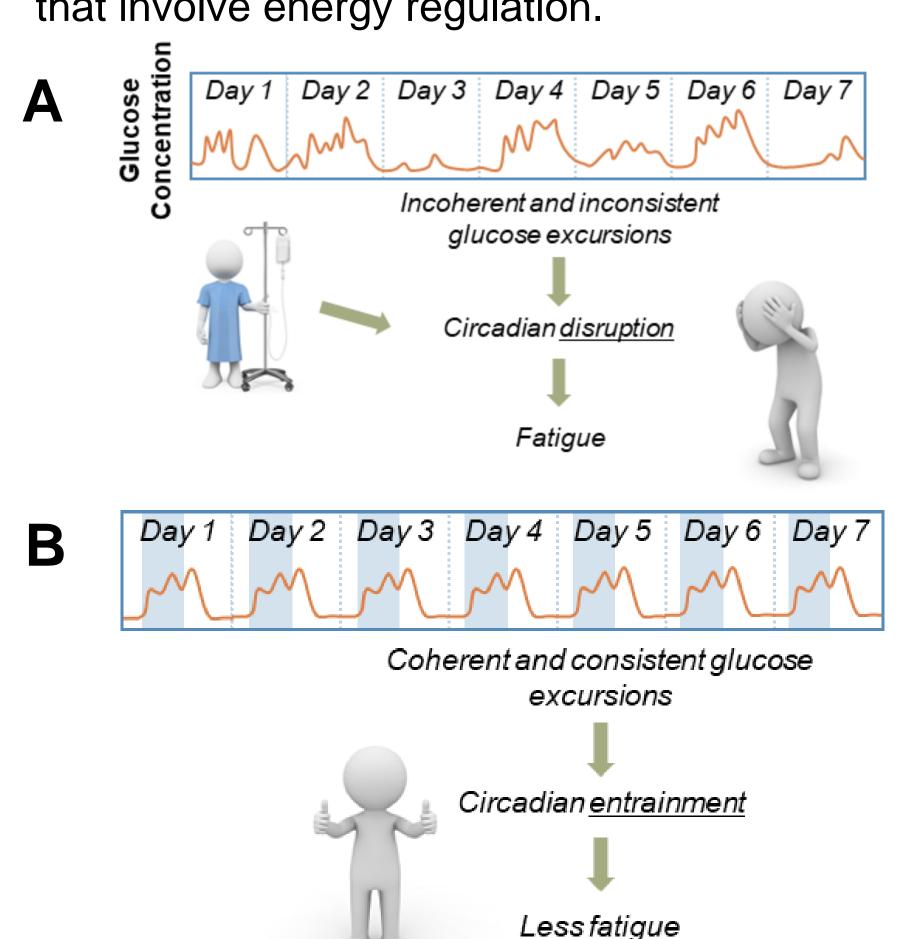


# Eating earlier in the day is associated with less cancer-related fatigue: Insights from the Women's Healthy Eating and Living (WHEL) study


Amber S. Kleckner,\* Ian R. Kleckner, Cynthia L. Renn; University of Maryland School of Nursing, Baltimore, Maryland, USA

### Cancer-related fatigue is common and debilitating

- Cancer-related fatigue affects 30-90+% of patients with cancer.<sup>1</sup>
- Cancer-related fatigue is unlike day-to-day fatigue in that it cannot be alleviated by sleep or rest.
- This fatigue can persist for months and even years after treatment.
- Persistent fatigue can greatly affect the ability to perform activities of daily living and can greatly reduce quality of life.
- There are few effective treatments, largely because the etiology and pathophysiology are poorly understood.<sup>2</sup>

## Theory: concordance between eating and daylight will be associated with less cancer-related fatigue

- Cancer<sup>3</sup> and cancer therapies<sup>4</sup> contribute to circadian dysregulation.<sup>5</sup>
- Nutrient timing may help regulate the circadian clock.<sup>6-8</sup>
- Fasting also initiates healthful metabolic processes that involve energy regulation.



#### Objectives

- To assess associations between nutrient timing and patient-reported fatigue
- To assess associations between meal timing consistency and patient-reported fatigue



#### Methods

- Clinicaltrials.gov: NCT00003787 (Catherine Marinac and John Pierce at University of California San Diego)<sup>9</sup>
- Baseline data were assessed
- **Eligibility:**
- Female
- Stage I, II, or IIIA invasive breast cancer within the previous 4 years
- Age 18–70 years at diagnosis
- Completed cancer treatment and have no evidence of cancer
- Eating window was calculated from 4-day timestamped food records
- Patient-reported fatigue was measured using the 9-item Energy scale of the Thoughts and Feelings Questionnaire and a single-item Tired question.
- Linear regression models were adjusted for age, body mass index, comorbidities, education, marital status, exercise habits, time since diagnosis, and anti-estrogen use.

#### References

- 1. Al Maqbali et al. (2020) J Pain Symptom Management, 13: 1012-1039.
- 2. Mustian KM, Kleckner AS, et al. (2017) JAMA Oncol 3: 961-968.
- 3. Sulli et al. (2019) Trends Cancer, 5: 475-494.
- 4. Roscoe et al. (2002) Supportive Care in Cancer, 10: 329-336.
- 5. Liu et al. (2013) Fatigue, 1: 12-26.
- 6. Chaix et al. (2009) Annu Rev Nutr, 39: 291-315.
- 7. Wilkinson et al. (2020) Cell Metab, 31: 1-13.
- Melkani et al. (2017) J Physiol, 595: 3691-700.
   Pierce et al. (2007) JAMA 298:289-298.

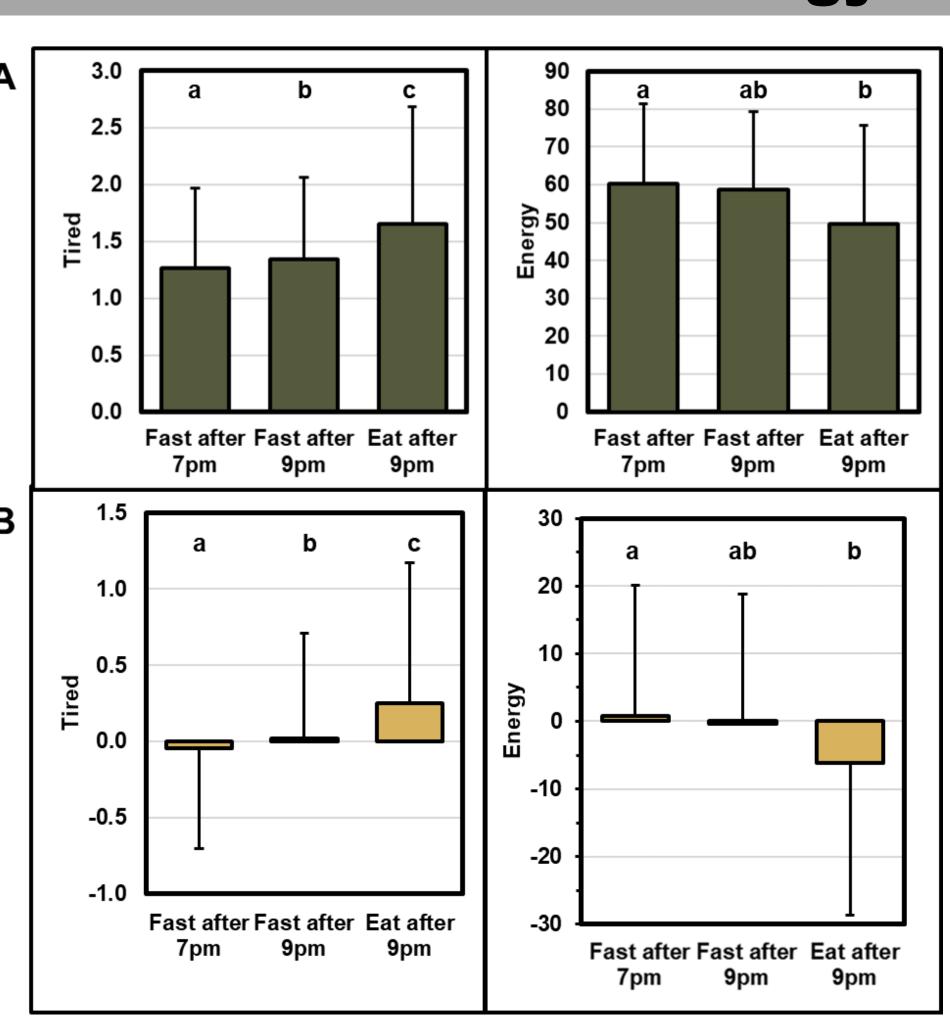
#### Results

|                                                  | <i>n</i> =2,914    |
|--------------------------------------------------|--------------------|
|                                                  | Mean ± SE or n (%) |
| Age (years)                                      | 52.7 ± 9.0         |
| Ethnicity                                        |                    |
| White, not Hispanic                              | 2492 (86%)         |
| Black, not Hispanic                              | 106 (4%)           |
| Hispanic                                         | 156 (5%)           |
| Other                                            | 160 (6%)           |
| Body mass index (kg/m²)                          | 27.3 ± 6.1         |
| Time since diagnosis (years)                     | 1.9 ± 1.1          |
| Treatment                                        |                    |
| Surgery                                          | 2913 (100%)        |
| Chemotherapy                                     | 2036 (70%)         |
| Radiation                                        | 1788 (61%)         |
| Anti-estrogen use (currently)                    | 1796 (62%)         |
| Exercise habits (Metabolic equivalents per week) | 871.7 ± 880        |
| Modified Healthy Eating Index                    | 54.66 ± 8.36       |
| Average eating window (hours)                    | 11.58 ± 1.59       |
| Variation in eating window (hours)               | 1.78 ± 1.11        |
| Time of last meal                                | 7:26pm             |
|                                                  | (1 h, 12 min)      |

## Length of eating window was not associated with fatigue

|                           | <b>Tiredness</b>  |                 | Energy             |                 |
|---------------------------|-------------------|-----------------|--------------------|-----------------|
| Meal timing measure       | Estimate ± SE     | <i>p</i> -value | Estimate ± SE      | <i>p</i> -value |
| Eating window (minutes)   | 0.0066 ± 0.4816   | 0.989           | 0.197 ± 0.226      | 0.385           |
| Start time                | 0.026 ± 0.010     | 0.014*          | -0.801 ± 0.291     | 0.006*          |
| End time                  | $0.022 \pm 0.010$ | 0.027*          | $-0.450 \pm 0.275$ | 0.102           |
| SD in eating window (min) | 0.002 ± 0.698     | 0.998           | -0.199 ± 0.327     | 0.543           |
| SD in start time          | -0.003 ± 0.013    | 0.797           | $-0.220 \pm 0.370$ | 0.552           |
| SD in end time            | $0.020 \pm 0.013$ | 0.128           | -0.209 ± 0.368     | 0.571           |
|                           |                   |                 |                    |                 |

\**p*<0.05


- Earlier start and end times were associated with less fatigue
- Consistency in eating window was not associated with fatigue (as measured as standard deviation, with a higher SD=more inconsistent)

#### Funding

USA National Institutes of Health (NIH) no. UL1TR003098,

Maryland Department of Health's Cigarette Restitution Fund Program, no. CH-649-CRF

## Eating after 9pm was associated with more tiredness and less energy



Tiredness and energy levels according to time of last meal at baseline. n=1,125 for 'fast before 7pm' (have last meal/snack before 7pm), n=1,737 for 'fast after 9pm,' and n=52 for 'eat after 9pm.' Error bars depict SD. Different lowercase letters indicate p<0.05 in Tukey HSD comparisons. A) Unadjusted plots. B) Values are adjusted for confounding factors.

#### Conclusions

- An earlier start time and earlier end time for daily eating windows were associated with less fatigue.
- Dietary interventions that encourage breakfast and discourage eating after 7pm should be tested to alleviate persistent cancer-related fatigue.

#### \*Correspondence

Email: amber.kleckner@umaryland.edu
Twitter: @amber\_kleckner

May 31, 2023