

Modulators of neuroinflammation have a beneficial effect in Lafora disease

B. Mollá^{1,2}, M. Heredia^{1,2}, M.A García-Gimeno³ and P. Sanz^{1,2}

1.- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain; 2.- U742 CIBER de Enfermedades Raras (CiberER), Spain; 3.- Dept. Biotechnology, ETSIAM, Polytechnic Univ. Valencia, Spain

ABSTRACT

lational Institute

- ✓ Lafora disease (LD) is a rare human disorder (OMIM#274780) showing a severe epileptic and neurodegenerative status with tonic clonic seizures, memory deficits and a rapid neurological decline.
- ✓ The onset is in adolescence and leads to death of the patient within 10 years, because an efficient treatment is still missing.
- ✓ The hallmark is the accumulation of insoluble polyglucosans, called Lafora bodies (LBs), typically in brain.
- ✓ Mutations in either laforin (EPM2A) or malin (EPM2B) genes cause the disease, and are clinically indistinguishable.
- ✓ Loss of function of laforin or malin have been related to metabolic dysfunction, proteostasis and autophagy impairment^(1,2), neuroinflammation⁽³⁾, deficient glutamatergic transmission⁽⁴⁾ and an oxidative stress status⁽⁵⁾ in mouse models of LD.
- ✓ Using a malin-deficient mice (Epm2b^{-/-}) we are testing different pharmacological approaches in order to assess their efficacy ameliorating the pathological phenotype present in this mouse model of LD⁽⁶⁾.

METHODS

- ✓ Epm2b^{-/-} mice received treatment with either C1 or C2 compounds whose main therapeutic mechanism is to modulate neuroinflammation.
- ✓ We injected intraperitoneally vehicle, C1 and C2 compounds in Epm2b^{-/-} (N=10 per group) and corresponding WT mice (C57BL/6JRccHsd; N=7 per group) from 3 to 5 months of age.
- ✓ Next, we performed a battery of behavioral tests and histopathological analyses to evaluate whether modulating neuroinflammation has a therapeutic effectiveness in LD.
- ✓ On the whole, this work shows a preclinical study of modulators of

RESULTS

B) OBJECT LOCATION MEMORY TEST (OLM) C) NEURODEGENERATIVE STATUS (Hindlimb clasping)

1. BEHAVIOURAL PHENOTYPING: COGNITIVE AND NEURODEGENERATIVE STATUS

A) WORKING MEMORY TEST (Y-MAZE)

B) ASTROGLIOSIS

area 15 20

VEHICLE

A) Relative proper spontaneous alternation between three arms (ABC) was tested using a Y-maze and related to working memory skill. *Epm2b*^{-/-} mice showed a working memory defect that was reversed by C1 and C2 treatments

A) POLYGLUCOSAN INCLUSIONS

WT_vehicle

VEHICLE

C1

C2

PAS staining

C) The degree of hindlimb clasping was scored from absent to severe and related to neurodegenerative status. Some Epm2b-/- mice showed a severe score that was reversed by C2 treatments

C) GRANULAR CELL LAYER (GCL)THICKNESS

Epm2b^{-/-}_C2

*Epm2b^{-/-}_*vehicle Epm2b^{-/-}_C1 Epm2b^{-/-}_C1 WT_vehicle *Epm2b^{-/-}_vehicle* Epm2b^{-/-} C2 WT_vehicle *Epm2b^{-/-}_vehicle* Epm2b^{-/-}_C1 Epm2b^{-/-}_C2 +

A) Number and % occupied area by polyglucosan B) % GFAP area (in green) was detected by C) Granular cell layer thickness (GCL) (in red) inclusions (in pink) were detected by PAS staining immunofluorescence and related to a pathological was detected by immunofluorescence and *Epm2b^{-/-}* mice significantly showed a huge astrogliosis condition. related to a pathological dispersion of neurons. amount of polyglucosan inclusions which was *Epm2b^{-/-}* mice significantly showed astrogliosis *Epm2b^{-/-}* mice showed a dispersion in GCL which slightly reversed by C1 and C2 treatments which was reversed only by C1 treatment was reversed by C1 and C2 treatments

Hippocampus

C1

C2

2. HISTOPATHOLOGICAL ANALYSIS IN HIPPOCAMPUS

VEHICLE

C1

CONCLUSIONS

We have found that modulating neuroinflammation using C1 and C2 compounds has a therapeutic effectiveness in LD mouse model since:

- ✓ C1 and C2 compounds tend to improve a working memory and an attention defect showed by Epm2b^{-/-} mice
- ✓ C2 compound is able to ameliorate the severe scores of neurodegenerative status found in Epm2b^{-/-} mice
- ✓ Both C1 and C2 compounds not only slightly reduce the amount of polyglucosan inclusions but also considerably reduce the dispersion of GCL in hippocampus
- C1 is able to decrease remarkably astrogliosis condition

REFERENCES

⁽¹⁾Aguado et al., 2010, Hum. Mol. Genet; ⁽²⁾ Knetch et al., 2012, Autophagy; ⁽³⁾ López-González et al., 2015, Mol Neurobiol.; ⁽⁴⁾ Muñoz-Ballester, C et al., 2016, BBA Molecular Basis of Disease; ⁽⁵⁾ Romá-Mateo et al., 2015, Free Radical Biology and Medicine; ⁽⁶⁾ Berthier et al, 2016, Mol Neurobiol; ⁽⁷⁾ García-Gimeno MA et al., 2018, Cells.