

Comparison of Droplet Digital PCR and qPCR for the Quantification of the Autolysin Gene (*lytA*) of *Streptococcus Pneumoniae*

Tanih NF¹, Abdoulie M-J Jabang¹, Rasheed Salaudeen¹, Muna Affara¹, Davis Nwakanma¹, Grant Mackenzie¹ MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Laboratory Services, Atlantic Boulevard, Fajara, P O Box 273, Banjul, The Gambia, West Africa.

Introduction

- Quantitative droplet digital polymerase chain reaction (ddPCR) is a novel technique providing absolute quantification of target nucleic acids without the need for reference material.
- Streptococcus pneumoniae (S. pneumoniae) is both an aggressive pathogen and a normal part of the human respiratory microbiome.
- There are few reports of the use of ddPCR for detection of clinical pathogens such as *S. pneumoniae* for which precise measurement is important.
- Quantification of target pathogens using ddPCR may be more precise than with quantitative real time polymerase chain reaction (qPCR).
- This study compared the diagnostic potential of ddPCR and qPCR for precision and absolute quantitation of the autolysin gene (*lytA*).

Materials and Methods

- Replicates of ten-fold serial dilution of ATCC 496196 S. pneumoniae strain were extracted and amplified to establish a qPCR assay for *lytA* diagnosis on a Bio-Rad CFX96 platform (Fig 1 and Fig 2).
- The assay was transferred and optimized on ddPCR and performance compared (Fig 4A).
- Three replicate runs of samples with pneumococcal genomes were analyzed on both platforms. Controls were included in all runs (Fig 3 and Fig 4B).
- Measurements were compared (Fig 5).

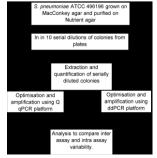


Fig 1: Sample processing workflow for comparison of droplet digital PCR and qPCR

Results

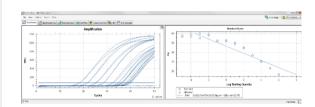


Fig 2: Amplification curves derived towards determination of limit of detection of *lytA* gene target on Bio-Rad CFX 96 platform 20

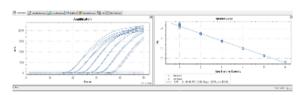


Fig 3: Amplification curves derived towards determination of coefficient of variation of *lytA* gene target on Bio-Rad CFX96 platform

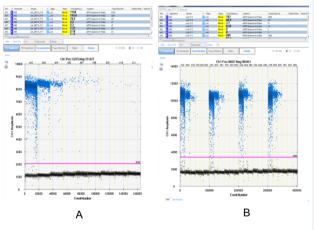


Fig 4: Determination of limit of detection of *lytA* gene target on ddPCR platform (A), and (B) Determination of coefficient of variation of *lytA* gene target on ddPCR platform.

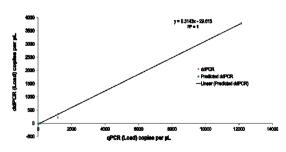


Fig 5: Correlation of quantitative real-time PCR and ddPCR methods following comparison of the measurements

Acknowledgements

This study was sponsored by Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine through Laboratory Services Department and Dr. Grant Mackenzie

References

Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem 2015; 61: 79–88.

Hindson CM, Chevillet JR, Briggs HA et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013; 10: 1003–1005.

Summary

•qPCR had lower sensitivity compared to ddPCR with a limit of detection at a Ct value of 36 while ddPCR had no limit of detection.

•The qPCR assay had a broader dynamic range compared to the ddPCR assay with saturation experienced for ddPCR at concentrations greater than 10⁴ copies/µL.

•The coefficient of variations were lower for qPCR compared to ddPCR. However, there was no statistical difference of the CV between the methods (\mathbb{R}^2 = 0.9999; P = 0.77396).

Conclusions

Accurate absolute quantification of the *lytA* target gene is possible with ddPCR

ddPCR shows promise to be in agreement with qPCR in *lytA* target quantification and is more sensitive compared to qPCR