DEVELOPMENT OF A SYNTHETIC DNA, NUVERSA, TO BE USED #### AS A STANDARD IN QUANTITATIVE PCR REACTIONS FOR #### MOLECULAR PNEUMOCOCCAL DETECTION AND SEROTYPING Fuminori Sakai*, Griffin Sonaty, David M. Watson, Keith P. Klugman, Jorge E. Vidal Rollins School of Public Health, Emory University, Atlanta, GA, USA *E-mail: fuminori.sakai@emory.edu # Background - Emergence of non-vaccine serotype pneumococcal disease is a new concern - Absolute quantification methods that identify vaccine serotypes as well as non-vaccine serotypes, such as quantitative (q)PCR, will be useful for evaluation and prediction of vaccine efficacy. - Obstacles for serotype population research with qPCR. - qPCRs for most of non-vaccine serotypes have not been reported. - Single-plex reaction is more efficient for serotype screening, but time-consuming and sample wasting. - The strain library for quantification standard, potentially 90s strains, will be required. ## Goal - Develop single-plex qPCR reactions covering most pneumococcal serotypes. - II. Improve the utility of single-plex reaction with TaqMan Array Card technology. - III. Engineer single synthetic DNA, Pneumococcal Universal Sequence Plasmid, for quantification standard of all qPCR reactions. #### I. Single-plex qPCRs for Serotyping | Ne' | wly | developed | assa | ays | (Hig | hli | ghted C | Cells) | | |----------------------------|-----------------------------|---|------------------|------------------|---|--------------|---|------------------------|----------------------------| | | Serotype Reference | | Serotype | | Reference | | Serotype | Reference | | | | 1 | (1) | 16F | | (1) | | 33B | | (4) | | | 2 | (1) | 164 | | This Stu | ıdy | 33D | | (4) | | | 3 | (1) | 174 | | This Stu | ıdy | 33C | This | Study | | | 4 | (1) | 17F | | This Stu | ıdy | 34 | | (4) | | | 5 | (1) | 18ABCF | | (1) | | 35AC/42 | (4) | | | | 6ABCD (1) | | 19A | | (1) | | 35F/47F | | (4) | | | 6CD (1) | | 19BF | | (2) | | 35B | | (2) | | 7AF | | (1) | 19F | | (1) | | 36 | | (4) | | | 7BC/40 | (4) | 19"F | | (4) | | 38 | | (2) | | 7C | | (4) | 19C
20 | | This Study | | 39 | | (4) | | | 8 (2) | | 20 | | (2) | | 41A
41F | | (4) | | | 9VA (1)
9LN (4) | | 21
22A | - | | | 411 | | (4) | | | 9LN (4)
10A (4) | | 22AF
23A | | (1) | | 43
45 | | (4)
(4) | | | 10A | (4) | 23R | | (3) | | 46 | | (4) | | 10CF | | This Study | 23F | | (1) | | 47AF | | (4) | | 11AD'E' | | (1) | 24/ | | (4) | | 48 | This | Study | | | 11F | (4) | 24B | | This Stu | ıdız | | | July | | 11BC
12ABF/44/46
12B | | This Study | 25AF | | (4) | | | | | | | | 16 (1) | 27 | | (4) | | | | | | | | (4) | 28AF | | This Study | | | | | | | 13 | (4) | 29
31
32AF | | (3)
(4)
This Study | | (1) Pimenta FC, et al. JCM. 2013
(2) Azzari C, et al. PLOS ONE 2011
(3) Azzari C, et al. Vaccine 2012 | | | | | 14 | (1) | | | | | | | | | | 15ABCF | (2) | | | | | | | | | _ | 15AF | (1) | 33AF/ | 37 | (1) | | (4) Sakai F, et | al. PLOS ON | E 2015 | | Serotype(s) | | Serguanno | Target
region | Accession
No. | Position | Sine
(ke) | Limit of detection
genome equivalence (g) | Concentration
(sAf) | Reaction
efficiency (ev | | SOCT | Porward
Reverse
Probe | OGAGTERFOGATGTTCTTATTGGC
OCCAMICOCCACTCTGTATTC
ACADDOCAAGACTGTGAATRTTGTTCCA | unjū | CE001651 | 4808-4831
4925-4944
4837-4864 | 197 | 21.4 (50) | 400
400
300 | 223.4 | | 118C | Forward
Reverse
Probe | TEAASTTERESSIATIESTEREA
TEAFTRICAGGASAGTTGRIDGEU
TOOGTGGGAAGATTCTGGTGCTAAG | sery | CREETES4 | 10 996-11 021
11 109-11 126
11 079-11 100 | 105 | 2.1(5) | 400
700 | 307.8 | | 16A | Forward
Reverse
Probe | OCTAGGAGGAACTTTTCTAGGG
TOGCTGTGGAAATGGGAAAG
GCCAGGGGATGAATGGATTATGGGG | work | CR991667 | 6675 6696
6787-6806
6703-6727 | 192 | 21.4 (50) | 200
200
200 | 92.9 | | 1/A | Forward
Revenue
Probe | TUAPTRIBITEATTECHTEGG
AASTECTAAARTTECTGTTTGAAAAGC
ATTRIBGGCGTGGGGTTACCGTAGG | Mily | CHROTON | 13 895-13 938
13 983-14 006
13 941-13 964 | 112 | 21(0) | 400
400
700 | 99.5 | | 17F | Forward
Reverse
Probe | TOCTTTTCTGGGTAGCAGAG
TTATGGCATAAAGCTGAGGGG
TGCAGCTGATRTGGCGAGCGART | WZX | CB991670 | 17 361 17 381
17 473-17 490
17 683 17 662 | 130 | 21.4 (50) | 400
400
200 | 97.8 | | | Comment | ARREGITTTICAGRITIACTTGATAGCTC | weht/ | CR9916/7 | 19 294-19 320
19 386-19 408
19 383-19 367 | 115 | 2.1(5) | 400
400
200 | 95.7 | | 19C | Reverse
Probe | DETTOCTENTGAGAGTEGTCAAG
TETTOCTEGCCOCACATAATGAACT | | | | | | | | | 19C
24BF | Revenue | | uzy | CR991688 | 15 038-15 067
15 146-15 170
15 085 15 110 | 133 | 2.1(5) | 400
400
200 | 201.5 | <u> Sakai F, et al. FEMS Microbiol lett. 2017</u> #### II. TaqMan Array Card: 94 Serotypes/groups ## III. NUversa DNA for Single-plex qPCRs # IV. Profiling Individual Serotype Quantify of Multiple-Serotype Carriage in the Nasopharynx ## Conclusion - A total of 67 single-plex qPCR reactions, which altogether detect 94 different pneumococcal serotypes/serogroups were developed. - ➤ 44 reactions target a unique serotype while 23 detect serotypes/serogroups. - Utilizing a PCR product amplified from a synthetic vector, the linearity and efficiency of all qPCR reactions tested were similar to those utilizing chromosomal DNA. #### Acknowledgement We thank Dr. Anne Von Gottberg, Dr. Mignon Du Plessis and Dr. Linda De Gouveia from National Institute of communicable Diseases for collaboration of PneumoTACs development. We also thank Dr. Lesley McGee, Dr. Srinivasan Velusamy and Dr. Bernard Beall from CDC for collaboration of PneumoTACs development and supply of reference pneumococcal strains. BILL & MELINDA GATES foundation