
• We provide a data-driven, patient-specific re-tuning methodology 
which can potentially improve control for 82% of patients, based on 
the results of an exhaustive reachability analysis

• Our results demonstrate that simple nondeterministic models allow 
us to efficiently tune key controller parameters, thus paving the way 
for interesting clinical translational applications

• To our knowledge, the correlation of closed-loop controller efficacy 
with patient HbA1c levels has not yet been studied in medial trials 
and presents a novel consideration for future work
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Conclusions

Data was obtained from an outpatient clinical trial of a predictive low-
glucose pump shutoff involving CGM, finger prick, and insulin data for 
nearly 50 patients with 90 sessions/patient

Patient Data

People with T1D exhibit variability in physiological characteristics 
such as hormonal fluctuations, activity, and food, which affect their 
glucose-insulin physiology. At the same time, control algorithms for 
the artificial pancreas can be tuned using numerous parameters that 
affect the correctness and performance of the closed-loop system.

Currently, the process of tuning and re-tuning parameters is carried 
out by the patient and physician following guidelines that are often 
vague and result in what is essentially an educated guess-and-check 
approach. We aim to improve efficiency and guarantee safety of the 
tuning protocol utilizing a novel data-driven patient-specific modeling 
approach.

Modeling Methods
Whereas existing approaches use deterministic models, we propose 
non-deterministic relational models that predict a range of possible 
glucose values rather than a single point. [Fig 1.] In order to replicate 
nonlinearity, we combine 5 models which are learned over various 
look-back windows, Δ". [Fig. 2]

These models capture important glucose trends as well as uncertainty 
in predictions arising from uncontrollable externalities such as CGM 
noise.

𝐺 𝑡 + Δ" ∈ 𝑎)𝐺 𝑡 + 𝑎*𝐺 𝑡 − Δ" + 𝑏𝐼 𝑡 − Δ. + [𝐿, 𝑈]

Fig. 2: Figure illustrating the 
prediction of a composite 
model, shown here with three 
combinations of (∆G,∆I). 
Predicted values are obtained as 
the intersection of the individual 
interval ranges predicted by 
each model. 

Results
Treating our patient model equations as constraints, and coupling 

them with a PID control scheme [2,3], we predict all possible behaviors 
of the closed-loop system over a time horizon using integer linear 
optimization solvers. 

Under the standard tuning protocol for gain [2,3], 5% of patients are 
predicted to be safe, defined as 100% time in range. [Fig 4]

Through exhaustive search, we find ideal gain parameters for each 
patient. K-means clustering shows a strong correlation between 
amount of retuning required, and patient HbA1C levels [Fig 5]

Based on clustering analysis, we construct a patient-specific retuning 
law based on readily available patient demographic data:

Under this retuning strategy, we find improved control and safety for 
82% of patients [Fig 6]

Fig.  5: Ratio	of	
best	found	gain	
parameter,	𝐾5,	to	
suggested	
parameter	from	
[2,3] clustered	by	
patient	HbA1C.

Fig.  4:  Min and max 
attainable blood 
glucose levels after 
6hrs for patients 
under closed-loop 
control using the 
tuning protocol from 
[2,3] 

Fig.  6:  Min and 
max attainable 
blood glucose 
levels after 6hrs 
for patients 
under closed-
loop control 
using our 
improved 
tuning law
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Eqn. and Fig. 1: Overall 
model structure and base 
equation that predicts 
future glucose values 
from past glucose (𝐺) and 
insulin (𝐼) values. The 
bound [𝐿, 𝑈]	gives 99% 
confidence interval 
range. 

Fig. 3: Example	of	model	
predictions	using	our	
nondeterministic
approach	(dashed	red)	and	
actual	patient	blood
glucose	(solid	blue)	for	
patient	ID	1.


