THE EFFECTS OF SUBCUTANEOUS INSULIN INFUSION VERSUS MULTIPLE INSULIN INJECTIONS ON GLUCOSE VARIABILITY IN YOUNG ADULTS WITH TYPE 1 DIABETES: THE METRO STUDY

*M.I. Maiorino*¹, M. Petrizzo², G. Bellastella¹, M. Gicchino², O. Casciano¹, P. Cirillo¹, M. Caputo¹, A. Sarnataro², F. Castaldo¹, O. Romano¹, D. Giugliano¹, K. Esposito¹.

¹University of Campania "Luigi Vanvitelli", Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Naples, Italy. ²University of Campania "Luigi Vanvitelli", Diabetes Unit, Naples, Italy.

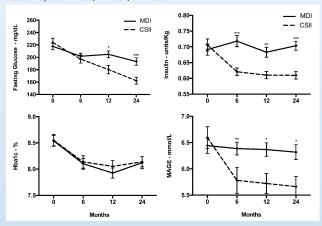
Introduction

The aim of the present study was to evaluate the long-term effects of continuous subcutaneuous insulin infusion (CSII), as compared with multiple daily injections of insulin (MDI), on glucose variability, glucose assessed with continuous monitoring (CGM), in a population of young adults with type 1 diabetes with sub-optimal glycemic control. To this purpose, we used data of the Management and technology for Transition (METRO) study, a longitudinal observational study of type 1 diabetic patients in transition from the pediatric clinic to the adult diabetes care center (1,2).

Methods

Patients aged 18-30 years and considered eligible for insulin pump therapy were included in the study. Ninety-eight patients who started CSII therapy and 125 who remained in MDI completed a 2-year followup. Glucose variability was assessed with continuous glucose monitoring using blood glucose standard deviation (BGSD), mean amplitude of glycemic excursions (MAGE), continuous overlapping net glycemic action (CONGA-2h), low blood glucose index (LBGI), high blood glucose index (HBGI), daily risk range (ADRR). Secondary end-points were HbA1c, fasting glucose, frequency of hypoglycemia, insulin dose, lipids profile, blood pressure, and treatment satisfaction (DTSQ).

 Table 1 – Main outcomes at 2 years. ^a Adjusted with the propensity score


		CSII (n = 98)			MDI (n = 125)			
Parameter	Baseline	Endpoint	Difference	Baseline	Endpoint	Difference	Adjusted Difference ^a (95% CI)	P value
Weight, Kg	70.7 ± 10.7	71.6 ± 10.7	0.85 ± 3.73	69.9 ± 9.5	70.3 ± 10.0	0.45 ± 4.48	0.63 (-2.11, 3.42)	0.65
BMI, kg/m ²	24.8 ± 3.3	25.1 ± 3.2	0.32 ± 1.49	24.2 ± 2.9	24.4 ± 2.7	0.23 ± 1.75	0.12 (-0.65, 0.93)	0.75
FG, mg/dL	224.1 ± 67.1	162.3 ± 54.5	-61.73 ± 72.4	217.8 ± 61.7	193.3 ± 67.5	-24.5 ± 74.6	-31.2 (-47.91, -14.42)	<0.001
HbA1c, %	8.6 ± 1.1	8.1 ± 1.0	-0.41 ± 1.07	8.5 ± 1.2	8.1 ± 1.3	-0.42 ± 1.0	0.05 (-0.26, 0.35)	0.77
Insulin dose, UI/kg	0.73 ± 0.2	0.63 ± 0.1	-0.10 ± 0.14	0.72 ± 0.2	0.73 ± 0.2	0.01 ± 0.14	-0.1 (-0.15, -0.06)	<0.001
MAGE, mmol/L	6.6 ± 2.1	5.7 ± 1.9	-0.93 ± 2.55	6.4 ± 1.6	6.3 ± 1.6	-0.12 ± 1.03	-0.74 (-1.22, -0.26)	<0.01
CONGA-2h, mmol/L	6.6 ± 1.6	6.3 ± 1.7	-0.31 ± 1.47	6.6 ± 1.8	6.4 ± 1.8	-0.19 ± 0.92	-0.01 (-0.48, 0.46)	0.97
SD, mmol/L	3.3 ± 0.8	3.2 ± 0.8	-0.17 ± 0.79	3.6 ± 0.8	3.5 ± 0.8	-0.06 ± 0.54	-0.3 (-0.52, -0.10)	<0.01
HBGI	8.5 ± 3.4	7.6 ± 3.0	-0.87 ± 3.28	8.9 ± 3.9	8.4 ± 3.3	-0.53 ± 2.16	-0.9 (-1.8, 0.05)	0.06
LBGI	5.5 ± 1.7	5.0 ± 1.9	-0.56 ± 1.3	5.5 ± 1.2	5.2 ± 1.4	-0.29 ± 1.06	-0.15 (-0.56, 0.26)	0.47
ADRR	31.9 ± 8.6	30.3 ± 8.0	-1.61 ± 5.22	32.1 ± 7.5	30.5 ± 6.8	-1.56 ± 2.61	-0.05 (-2.10, 2.05)	0.97
DTSQ total score	27.5 ± 3.5	29.1 ± 3.7	1 (0, 3)	27.4 ± 3.7	28.2 ± 3.4	1 (-1, 2)	0.5 (-0.42, 1.52)	0.27
perceived hypoglycemia	3 (2, 4)	2 (1, 3)	-1 (-2,0)	3 (2, 4)	3 (2, 3)	-1 (-1, 0)	-0.5 (-0.83, -0.21)	<0.01
perceived hyperglycemia	2 (2, 3)	2 (1, 3)	0 (-1, 1)	2 (2, 3)	2 (1, 3)	-0.5 (-1, 0)	-0.02 (-0.35, 0.30)	0.93

For legends refer to Introduction and Methods

Results

MAGE and BGSD decreased in both groups, with an adjusted differences of -0.74 mmol/L (95% confidence interval [CI] -1.22 to -0.26, P=0.003) and -0.3 (CI -0.52 to -0.1, P = 0.005) favoring the pump-therapy group (Tab.1, Fig.1). No significant differences between groups in the other variability indexes were observed (Tab.1). HbA1c decreased in both groups without significant difference (0.05, -0.26, 0.35, P = 0.77); fasting glucose, insulin dose and overall hypoglycemia (daily, nocturnal, and severe) decreased more in patients with CSII, as compared with those with MDI (Fig.1, Tab.2).

Figure 1 - HbA1c Levels, MAGE, fasting glucose, and insulin dose at 6, 12, and 24 months in all the study patients according to insulin regimen. Values are means ± SE. Asterisks denote significant differences for all comparisons between pump therapy and injection therapy at each time point. * P<0.05; **P<0.01; ***P<0.001.</p>

Table 2 - Frequency of hypoglycemic events according to the treatment regimen											
Baseline				2 years							
Events, n	CSII (n = 98)	MDI (n = 125)	Р	CSII (n = 98)	MDI (n = 125)	Р					
Daily hypoglycemia, n (%)											
0	0 (0.00)	1 (0.80)		10 (10.20)	1 (0.80)						
≥ 1	98 (100.0)	124 (99.20)	0.37	88 (89.80)	124 (99.20)	<0.01					
Nocturnal hypoglycemia, n (%)											
0	53 (54.08)	69 (55.20)		71 (72.45)	64 (51.20)						
≥1	45 (45.92)	56 (44.80)	0.87	27 (27.55)	61 (48.80)	<0.01					
Severe hypoglycemia, n (%)											
0	69 (70.41)	84 (67.20)		88 (89.80)	99 (79.20)						
≥ 1	29 (29.59)	41 (32.80)	0.61	10 (10.20)	26 (20.80)	<0.05					

Conclusion

Among young adult with type 1 diabetes transitioning from the pediatric care, the use of CSII is associated with lower glucose variability, fasting glycemia and overall hypoglycemic events than MDI during a 2-year period of follow-up.

References

1. Maiorino MI, et al. Reducing glucose variability with continuous subcutaneous insulin infusion increases endothelial progenitor cells in type 1 diabetes: an observational study. *Endocrine*. 2016;52:244-52.

2. Maiorino MI, et al. Treatment satisfaction and glycemic control in young Type 1 diabetic patients in transition from pediatric health care: CSII versus MDI. *Endocrine*. 2014;46:256-62.

