

Could the sensor-augmented pump determine a better beta cells reserve in time or are there other interfering factors?

Gallo F, Conte P, Moramarco F

Unit of Pediatrics, Perrino Hospital, Brindisi. Italy

ABSTRACT

There is no unanimous consent that the use of sensor augmented pump (SAP) right after the diagnosis of diabetes will lead to a better preservation of insulin reserve and metabolic control in later years.

RESULTS

We found no significant differences between the three groups in terms of C-peptide levels, glycated and anti-GAD, but a far better average percentage of therapeutic range BG levels in children with SAP. However, if we evaluate the data considering the C-peptide levels and anti-GAD at the onset of diabetes, those with higher levels of C-peptide and lower levels of anti-GAD maintain a more insulin reserve over time and make less insulin, tending to have lower percentage of BG out of range.

METHODS

In our study we compared 3 group of 15 prepubertal children:

1) SAP within one month after the diagnosis of diabetes;

2) pump and self-monitoring glycemic control (SMBG) - at least 5 daily measures3) MDI with SMBG.

We considered C-peptide, HbA1c and GAD antibodies levels at the onset and 18 months later. Then the kids with SMBG were provided with glucose monitoring flash system for two weeks. We compared C-peptide, insulin dose (U/Kg/day), percentage of blood sugar levels outside the desired range (90-130 mg/dl) and anti-GAD levels.

C pe	ptide at ons				
	18 m C pep % hyper			ins dose	
	r = 0,90	r = - 0,81	r= - 0,78	r= - 0,80	
Anti	GAD at ons				
	r= - 0,83	r= 0,80	r= 0,72	r= 0,82	

What we observed can inspire research with the implication of more patients.

CONCLUSIONS

18 m		C pep	GAD Ab	% over	% under	ins/day	A1c
SAP	М	0,43	156,1	46,6	14,5	0,6	62,6
	SD	0,25	62,6	7,7	4,1	0,13	3
MICRO	М	0,49	146,2	46,7	15,4	0,59	66,1
	SD	0,23	48	8,6	2,8	0,14	3,8
MDI	М	0,53	131,9	50	21,7	0,61	72,5
	SD	0,21	46,2	8,2	4,2	0,14	4,7

REFERENCES

Kordonouri O. and others: Sensor augmented punp therapy from onset of type 1 diabetes mellitus : late follow up results of the Pediatric Onset Study. Pediatric Diabetes 2012

Trang T. Ly and others: A cost-effectiveness analysis of sensor-augmented insulin pump therapy and automated insulin suspension versus standard pump therapy for hypoglycemic unaware patients with Type 1 Diabetes. Value in Health 1 7 (2014) 5 6 1 – 5 6 9

Buckingham B. and others: Effectiveness of Early Intensive Therapy on beta-Cell Preservation inType 1 Diabetes. Diabetes Care 36:4030–4035, 2013

Thrailkill K.M. and others: Insulin pump therapy started at the time of diagnosis: effects on glycemiccontrol and pancreatic beta-cell function in type 1 diabetes. Diabetes technology & therapeutics, 2011