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Introduction
Continuous glucose monitoring (CGM) sensors measure the glucose concentration in the in-
terstitial fluid (IG), whereas the user is interested in the glucose level in the blood (BG). It is
well known that there is a time delay between the BG level and the measured CGM signal. To
counterbalance this effect, a model that describes this time delay is needed.
The dynamics between BG and IG can be described by a first order filter model as

τ
dIG(t)

dt
= −IG(t) + BG(t) (1)

where τ is the time constant for diffusion.
In our analysis we compared performance of different prediction algorithms for the compensa-
tion of the CGM time lag.

Methodology
The following linear and nonlinear prediction models have been considered in this analysis:

• Linear autoregressive models (ARX)
An autoregressive (AR) model is a representation of a random process; the notation
AR(n) indicates an autoregressive model of order n, defined as

IGest(tk) =

n∑
i=1

ai · IGest(tk−i) + εk

where a1, ..., an are the parameters of the model and εk is white noise.
The used ARX structure with h steps ahead prediction has the form

IGest(tk+h) =

n∑
i=0

ai · IGest(tk−i) + b0 ·
dIGest
dt
(tk) + εk,

where the derivative dIGest
dt (tk) being the exogenous input is estimated using a Kalman

filter [1].
Two main classes of ARX models have been implemented:

– a global ARX model, trained on the global training set (abbreviated as GARx in
the results table);

– a patient-specific ARX model, with specific parameters for each patient (ab-
breviated as PSARx in the results table).

• Nonlinear autoregressive models (NARX)
For h steps ahead prediction, a NARX model with polynomial regressors has the form

IGest(tk+h) = fp(IGest(tk−1), . . . , IGest(tk−na),

dIGest
dt
(tk), . . . ,

dIGest
dt
(tk−nb+1)) · θ + εk

fp is a function that spans all polynomial combinations of its arguments up to a degree p,
θ is the model’s parameter vector. The model orders are na and nb. We fixed nb = 1.
In the comparison table these models are denoted GNARxp(na) and PNARxp(na), where
G stands for global models and P stands for patient-specific models, respectively.

• CWT-based differentiation method
Additionally, we analyzed the same first order filter model (1), but with the derivative
calculated based on continuous wavelet transform (CWT) originally published in [2].

Clinical data for validation

• Description of the dataset
In total a set of 177 records (experiments) was used. Each record contains data of one
patient measured over a period of 7 days. The records contain data of 77 different
patients in total. Each of the 177 records among others contains the following data:

– sensor signals and corresponding time stamps (one current value every minute)
– SMBG reference measurements available about every hour and their time stamps

• Splitting the data
Since the behavior of global and patient-specific prediction algorithms has to be evaluated
and compared, it has been chosen to split the whole dataset into three different sets:

– a global training set, consisting of the entire data sequences of 120 experiments
taken on randomly selected patients;

– a patient-specific training set, consisting of the first day of data taken from
the rest of patients;

– a validation set, consisting of the latter six days of data taken from the same
patients as the patient-specific training set.

The sensor sensitivities have been estimated beforehand from the SMBG and the current data
by means of an off-line calibration algorithms [3].

Results
The column "PH" (in min) represents the prediction horizon h for a specific prediction model
that leads to the minimum average MARD. Note that h was varied and the minimum average
Mean Absolute Relative Difference (MARD) on the training set was found. This value of h
was then fixed for each specific model and average MARD on the validation set was evaluated
(column "MARD").

Model MARD PH h

No prediction 9.09 0.00
Model (1) 7.80 8.00
CWT 7.69 8.00

GARx(2) 7.69 12.00
GARx(4) 7.70 12.00
GARx(11) 7.70 12.00
GNARx2(2) 7.86 10.00
GNARx2(4) 7.86 10.00
PSARx(2) 7.72 16.00
PSARx(4) 7.88 19.00
PNARx2(2) 8.29 15.00
PNARx2(4) 8.61 15.00

Conclusion
It can be concluded that the global ARX model of order 2, GARx(2), and the CWT-based two-compartment model perform best in terms of MARD. The higher order linear as well as the nonlinear
models do not bring any significant performance improvements when evaluated on the validation set, due to the possibility of overfitting the estimation data, they even perform worse on the
validation data than the simpler (and more robust) models. The same reasoning applies for the patient-specific models. In general, using prediction is beneficial compared to no prediction, but the
gain of advanced algorithms is relatively low compared to the SOA model (1).
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