

Advanced Technologies & Treatments for Diabetes

The Role of the Human Kidneys in Glucose Homeostasis: A Phenomenological Based Semiphysical Model

Laura Lema Pérez, MSc., Carlos Esteban Builes Montaño, MD., Alex Ramírez Rincón, MD³, José García-Tirado, PhD⁴, Hernán Alvarez, PhD¹ Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energía, Grupo Kalman.²Hospital Pablo Tobón Uribe, Universidad de Antioquia.³Clínica Integral de Diabetes (CLID), Medellín - Colombia.⁴Center for Diabetes Technology, University of Virginia, Charlottesville, VA

UNIVERSIDAD NACIONAL DE COLOMBIA

RESULTS

Brain

Kidneys

Adipose

tissue

Other organs

 \rightarrow and tissues

Muscular System

INTRODUCTION

Kidneys play an important role in glucose homeostasis in three ways: Glucose production

GENERAL OBJECTIVE

Propose a Phenomenological Based Semiphysical Model, with parameters interpretability from current physiological knowledge to describe the role of the kidneys in the glucose homeostasis in humans.

METHODOLOGY

- Verbal description of the real object and modeled hypothesis

The results were adapted to the data reported in the literature. In the post-absorptive state, renal glucose production is approximately 20-25% of total body glucose, while in the postprandial state renal glucose production is three times higher than production in the post-absorptive state, reaching 60%. The literature reports precise data on the use of non-carbohydrate precursors for the renal endogenous glucose production in the post-absorptive state, therefore the **mathematical model** for each precursor could be solved. However, for the postprandial state there are no specific data on the use of each non carbohydrate precursor. Our results shows how the non-carbohydrate precursors filtered through the glomerulus are utilized, remaining just a few amount unutilized.

- Applicate the conservation principles and physical laws

$$\frac{dN_{PS_i}}{dt} = \dot{n_{in}} - \dot{n_{out}} + \dot{n_P} - \dot{n_C}$$

- Make explicit the specification levels from constitutive equations and evaluate of the meaning of the parameters

Arrhenius Law
$$---- \rightarrow r_j = K_0 * C_j * e^{\frac{-Ea}{RT}}$$

- Representation like a set of process systems

FUTURE WORK

- Degree of freedom analysis
- Computation solution of the model
- Model validation

Non Carbohydrate Precursor	Average Utilization Rate $(\mu \ m \ o \ d)$	Reference
Glutamine	0.539074	[2], [4], [5], [6], [7]
Renal Glucose production from Glutamine	0.269537	Stoichiometry
Lactate	1.637857	[2], [4], [5], [6], [7]
Renal Glucose production from Lactate	0.818928	Stoichiometry
Alanine	0.207083	[2], [4], [5], [6], [7]
Renal Glucose production from Alanine	0.103541	Stoichiometry
Glycerol	0.318095	[2], [4], [5], [6], [7]
Renal Glucose production from Glycerol	0.159047	Stoichiometry

Energy

Pancreatic model

Construction of a whole mathematical model with parameters interpretability describing the dynamic of blood glucose in the human body

REFERENCES

- 1. C. Meyer et al., "Role of the human liver, kidney, and skeletal muscle in postprandial glucose, homeostasis," Am J Physiol Endocrinol Metab, vol. 282, pp. 419-427, 2002.
- 2. J. E. Gerich, "Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications," DIABETICMedicine, vol. 27, no. i, pp. 136-142, 2010.
- 3. J. E. Gerich, "Physiology of glucose homeostasis," Diabetes, Obes. Metab., vol. 2, no. 6, pp. 345-350, 2000.
- 4. M. Alsahli and J. E. Gerich, "Renal glucose metabolism in normal physiological conditions and in diabetes," Diabetes Res. Clin. Pract., vol. 33, pp. 1-9, 2017.
- 5. M. Stumvoll, G. Perriello, C. Meyer, and J. Gerich, "Role of glutamine in human carbohydrate metabolism in kidney and other tissues," Kidney Int., vol. 55, no. 3, pp. 778-792, 1999.
- 6. K. Ekberg et al., "Contributions by Kidney and Liver to Glucose Production in the Postabsorptive State and After 60 h of Fasting," Diabetes, vol. 48, no. 2, pp. 292-8, 1999.
- 7. J. E. Gerich, Control of glycaemia, vol. 7, no. 3. 1993.