# ROUTINE USE OF SENSOR AUGMENTED PUMP COMPARED WITH INSULIN PUMP THERAPY IN PATIENTS WITH TYPE 1 DIABETES



Quirós C, Viñals C, Giménez M, Conget I.

Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain

#### INTRODUCTION

Most of the studies evaluating continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) therapies are clinical trials including a selected population, during a short or mid-term period and in within very specific conditions; therefore, they do not usually reflect the routine use of these therapies in real world conditions.

### **OBJECTIVES**

To analyse the real life routine use of CSII therapy with or without CGM and its effectiveness in type 1 diabetic patients (T1D).

#### METHODS

Retrospective observational cross-sectional study collecting routine use data from T1D patients between January-December 2016. CSII and sensor augmented pump (SAP) users were matched in relation 3:1 paired by diabetes duration and gender. Patients used Paradigm Veo or 640G (Medtronic-Minimed®) devices with a linked blood glucose meter.

Baseline characteristics, metabolic control, device settings and routine use of CSII/SAP were compared.

#### RESULTS

#### **1. Baseline characteristics** Total CSII SAP (n=40) (n=160) Gender: women 88 (55) 22 (55) 66(55) n.s. (n-%) Age (years) 46.7 ± 12.0 $45.8 \pm 10.5$ $47.1 \pm 12.5$ n.s. Diabetes 28.7 ± 9.3 28.8 ± 9.4 28.7 ±9.4 n.s. duration (years) Using CSII $10.2 \pm 4.7$ $10.1 \pm 5.0$ $10.2 \pm 4.6$ n.s. (vears) Main indication for CSII (n-%)

SMC 90 (56.3) 15 (37.5) 75 (62.5) 44 (27.5) 17 (42.5) 27 (22.5) 0.032 Hypoglycemia Both 22 (13.8) 7 (17.5) 15 (12.5) Pregestational 1 (0.6) 1 (2.5) 0(0) control

\* SMC: suboptimal metabolic control; SMBG: self-monitoring blood glucose; BW: bolus wizard.

#### 3. Routine use and device settings of CSII/SAP

|                                                 | SAP<br>N=40        |                  |         |
|-------------------------------------------------|--------------------|------------------|---------|
| SMBG per day (n)                                | 3.3 ± 1.9          | $4.4 \pm 2.0$    | <0.01   |
| Total bolus per day (n)                         | 6.2 ± 3.6          | 4.7 ± 1.6        | <0.05   |
| Manual bolus per day<br>(n)                     | $1.4 \pm 2.1$      | 0.8 ± 1.5        | <0.05   |
| BW over total (%)                               | 74.4 ± 32.7        | 82.6 ± 27.3      | n.s.    |
| BW corrected by the patient (%)                 | 16.3 ± 14.1        | 20.5 ± 21.8      | n.s.    |
| Basal segments per<br>day (n)                   | $6.5 \pm 2.1$      | $5.9 \pm 1.5$    | <0.05   |
| Number of basal<br>patterns (n)                 | $1.2 \pm 0.4$      | $1.3 \pm 0.5$    | n.s.    |
| BW High glucose<br>target at daytime<br>(mg/dL) | 120.3 ± 12.1       | 121.2 ± 12.3     | n.s.    |
| BW Low glucose target<br>at daytime (mg/dL)     | 95.3 ± 11.0        | 95.5 ± 11.2      | n.s.    |
| BW High glucose<br>target at night (mg/dL)      | 127.9 ± 12.6       | 129.9 ± 14.1     | n.s.    |
| BW Low glucose target<br>at night (mg/dL)       | 104.4 ±13.1        | 104.3 ± 15.8     | n.s.    |
| Time of CSII<br>suspension (min/14d)            | 1362.4 ±<br>1306.9 | 134.6 ±<br>281.1 | <0.0001 |

#### 2. Metabolic control

|                            | Total (n=160) | SAP (n=40)   | CSII (n=120) | P-value |
|----------------------------|---------------|--------------|--------------|---------|
| HbA1c (%)                  | 7.63 ± 0.83   | 7.42 ± 0.74  | 7.70 ± 0.85  | 0.068   |
| Mean blood glucose (mg/dL) | 159.9 ± 31.0  | 150.8 ± 31.9 | 162.9 ± 30.2 | <0.05   |
| Values >180 mg/dl (%)      | 35.5 ± 17.1   | 30.4 ± 18.9  | 37.2 ± 16.1  | <0.05   |
| Values <70 mg/dl (%)       | 10.3 ± 9.3    | 11.5 ± 8.0   | 9.8 ± 9.7    | 0.320   |



## CONCLUSIONS

➢ In real world clinical practice, SAP therapy is associated with a significant improvement in glucose profile in T1D patients in comparison with CSII.

More frequent self-adjustments of therapy with SAP may have contributed to these results.