NONADJUNCTIVE FLASH GLUCOSE MONITORING USE DURING SUMMER CAMP IN CHILDREN WITH TYPE 1 DIABETES - THE FREE-SUMMER STUDY

Claudia Piona¹, Gül Yeşiltepe Mutlu², Klara Grad³, Petra Gregorc³, Klemen Dovc⁴, Tadej Battelino^{3,4}, Nataša Bratina^{3,4}

¹Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes,

²Department of Pediatrics, Koç University Hospital, İstanbul, Turkey

³Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
⁴Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia

BACKGROUND

- FreeStyle Libre™, a factory-calibrated sensor for Intermittently scanned Continuous Glucose Monitoring (isCGM), is accurate and safe in children with type 1 diabetes (T1D).
- There are no published data on isCGM effectiveness as a replacement for self-monitoring of blood glucose (SMBG) in this population.
- The **aim** of this study was to evaluate the **nonadjunctive use** of this isCGM **in children with T1D** during two weeks in a **summer camp**.

METHODS

STUDY DESIGN AND PARTICIPANTS

This randomized, double-blinded, parallel design study was conducted in a supervised outpatient setting at a 2-week summer camp for children with T1D engaging in free-living conditions.

- Major inclusion criteria: • Age \ge 6 years and \le 15 years;
- T1D > 6 months;
- CSII use > 3 months;
- HbA1c \ge 6.3% and \le 10% (45-86 mmol/mol);
- Daily regular SMBG.

Major exclusion criteria:

- Significant concomitant diseases and co-morbidity that could influence metabolic control or compromise a participant's safety;
- oral or parenteral glucocorticoid therapy;
- hypoglycaemia unawareness or more than 2 episodes of severe hypoglycemia with seizure and/or coma within the 6 months prior to the screening visit.
 RANDOMIZATION AND PROCEDURES

Forty-five participants were randomized:

- Intervetion isCGM group: 25 subjects were blinded for the SMBG and insulin dosing was isCGM based, except in the following circumstances when participants and caregivers used SMBG measurements:
- a) symptoms of hypoglycemia but the sensor glucose concentration not hypoglycemic or dropping rapidly
- b) for 20 min after treating a low sensor glucose concentration if the sensor glucose level had not begun to rise
- c) before a bolus when the sensor glucose value was above 13.9 mmol/l (250 mg/dL)
- d) for a fasting glucose above 16.7 mmol/l (300 mg/ dL) or glucoseduring the day above 16.7 mmol/l (300 mg/dL) for more than one bour
- mg/dL) for more than one hour. • Control - SMBG group: 20 subjects were blinded for
- isCGM and performed SMBG based insulin dosing. No standardized treatment protocols or insulin titration algorithms were used.

OUTCOMES

- The primary outcome was between-group difference (isCGM vs. SMBG) in time in range 3.9-10 mmol/l (TIR).
- Prespecified secondary endpoints were
- sensor-derived glycemic measures
- evaluation of nonadjunctive use in the intervention group
- isCGM system performance through accuracy analysis measurements.

RESULTS

- Data representing glycemic control outcomes are shown in *Table 1*.
 The primary outcome TIR (3.9 -10 mmol/l) and the other secondary outcomes related to glycemic control were not different between the two groups.
- For the subpopulation with suboptimal metabolic control (HbA1c >7%) we observed a significant increase in the proportion of TIR and a decrease in the time in hyperglycemia above 10 mmol/. There was no change in time in hypoglycemia below 3.0 mmol/L
- No severe hypoglycemic events or serious adverse events occurred.
 - Accuracy performance
- For assessment of accuracy there were 2788 paired isCGM-SMBG results.
 Overall MARD was 18.3%, median ARD was 8%, MRD was 8.3% and MAD
- was **1.2 mmol/l** (22.1 mg/dL). The **CEG analysis** demonstrated **82.2%** of results in **zone A** and **95.2%** of
- The CEG analysis demonstrated 52.2% of results in zone A and 55.2% of results in zones A and B (*Figure 1*); these results with analysis of values > 4.4 mmol/l (80 mg/dL) (2392): the combined zone A and B percentage was 99% with only 1% of the paired samples in zone C.
- Regression analysis resulted in high agreement between the sensor glucose results compared to capillary BG readings (slopes of 1.01, intercepts of 0.2 mmol/l (3 mg/dL), and correlation coefficient of 0.91).
- The percentage of isCGM results within and outside the range ± 2 mmol/l (36 mg/dL) of capillary results was 82.4% (n=2297) with 50.7% of the sensor outside values been found with analysis for reference glucose below 4.4 mmol/L (80 mg/dL) (*Table 2*).

Table 1. Glycemic control of children with type 1 diabetes							
	Participants (n= 45)			Participants with HbA1c>7% (n=29)			
	SMBG (n= 20)	isCGM (n=25)	P-value	SMBG (n= 13)	isCGM (n=16)	P-value	
Time within Range 3.9 – 10.0 mmol/l (%)	50.8 ± 13.75	50 ± 11.25	0.64	10.5 ± 1.7	12.2 ± 2.4	0.05	
Time < 3 mmol/L (%)	1.4 ± 2.2	1.3 ± 1.7	0.98	1.0 ± 1.9	1.5 ± 1.6	0.35	
Time > 10 mmol/L (%)	44.7 ± 15.8	45.2 ± 12.5	0.69	53.0 ± 8.0	43.9 ± 11.6	0.03	

Table 2. The percentage of isCGM results within and outside the range ± 2 mmol/l of SMBG.

	Number	%
Results outside range ± 2 mmol/L (36 mg/dL) All < 4.4 mmol/L (80 mg/dL)	491 249	17.6 8.9
Result within range ± 2 mmol/L (36 mg/dL)	2297	82.4
Total	2788	100

CONCLUSIONS

- This randomized, double-blinded, controlled clinical trial assessed the effect on glycemic control of using isCGM alone to make insulin dosing decision compared to SMBG based decision making in children with T1D during a summer camp.
- Our data showed that for the primary outcome of CGM-measured TIR, use of isCGM alone was non-inferior to SMBG and was associated with reduced time in hyperglycemia and improvement of time in range in patients with sub-optimal glycemic control.
- For all other efficacy outcomes for CGM-measured time in hyperglycemia, hypoglycemia and glucose variability there was no significant difference between the two groups.

Acknowledgements

The authors would like to thank the study participants and all involved nurses, nurse educators and caregivers who took part to the camp.