MINIMEDTM 670G PIVOTAL TRIAL:

TIMING OF MEAL BOLUS PLAYS A CRITICAL ROLE IN POSTPRANDIAL GLUCOSE CONTROL

Roy A, PhD; Grosman B, PhD; Parikh N, PhD; Wu D, PhD; Lee SW, MD; Kaufman FR, MD Medtronic, Northridge, California, USA

Introduction

The Auto Mode feature of the Medtronic MiniMedTM 670G system with SmartGuardTM technology automatically adjusts basal insulin delivery every 5 minutes based on sensor glucose (SG) values. Patients are required to calibrate the sensor, enter meal carbohydrate estimates, and notify the system of exercise. The MiniMedTM 670G system pivotal trial data ^{1,2} were analyzed to study the effect of the timing of meal boluses on postprandial SG levels.

<u>Methods</u>

Pivotal Trial Study Design:

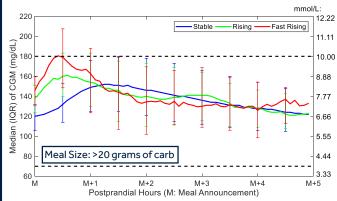
- 1. Sites: 9 in US & 1 in Israel
- 2. 124 Type 1 patients (A1C <10%)
- 3. Pump use ≥6 months (+/- CGM)
- 4. Run-in Phase: Open loop (Manual Mode) for 2 weeks
- 5. Study Phase: Closed loop (Auto Mode) for 3 months

Postprandial Analysis:

- 1. A total of 3,708 postprandial periods were analyzed
- 2. Two meal cohorts were analyzed based on the userannounced carbohydrate content: (a) **Small meals**: ≤20 grams and (b) **Medium-to-Large meals**: >20 grams

Postprandial Analysis (Cont.):

- 3. Both cohorts were divided into 3 groups based on sensor rate of change (ROC) at meal announcement:
 - Stable (ROC <0.5 mg/dL/min) assuming bolus is delivered prior to meal consumption
 - Rising (ROC >1 mg/dL/min) assuming bolus is delivered after/during meal consumption
 - Fast Rising (ROC >2 mg/dL/min) assuming bolus is delivered after/during meal consumption
- Meal events following another meal entry within 5hour timeframe were discarded


Results

	Stable (ROC <0.5 mg/dL/min)	Rising (ROC >1 mg/dL/min)	Fast Rising (ROC >2 mg/dL/min)
Small Meals: ≤20 grams			
Number of meal events	673	78	15
Mean carb-to-insulin ratio, grams/unit	9.4 ± 3.2	8.7 ± 3.0	8.3 ± 2.7
Mean postprandial SG peak, mg/dL	174 ± 35	177 ± 28	178 ± 34
Mean postprandial SG AUC >180 mg/dL, min×mg/dL	524 ± 1,502	666 ± 1522	713 ± 2,095
Mean postprandial SG time >180 mg/dL, min	25 ± 46	28 ± 50	30 ± 57
Medium-to-Large Meals: >20 grams			
Number of meal events	2,634	323	63
Mean carb-to-insulin ratio, grams/unit	9.4 ± 3.7	9.0 ± 3.2 [†]	8.6 ± 3.1‡
Mean postprandial SG peak, mg/dL	190 ± 41	203 ± 43 [†]	216 ± 43 [‡]
Mean postprandial SG AUC >180 mg/dL, min×mg/dL	1,557 ± 3,011	1,949 ± 3561 [†]	2,624 ± 4083 [‡]
Mean postprandial SG time >180 mg/dL, min	45 ± 60	55 ± 63 [†]	67 ± 70 [‡]

All values, except 'Number of meal events', are shown as mean \pm SD.

† Indicates significance in p-value, between Stable (ROC < 0.5 mg/dL/min) and Rising (ROC > 1 mg/dL/min) groups.

† Indicates significance in p-value, between Stable (ROC < 0.5 mg/dL/min) and Fast Rising (ROC > 2 mg/dL/min) groups.

- Medium-to-Large meal cohort:
 - For the **Stable** group: postprandial SG-peak, AUC > 180 mg/dL, and time spent > 180 mg/dL were significantly lower compared to those of the other two groups
 - Although meal boluses in the two Rising groups were more aggressive, better postprandial outcome was observed in the Stable group due to pre-meal timing of boluses
- Small meal cohort: No significant differences were observed among the three groups

Conclusions

- This analysis demonstrates that meal-bolus timing for meals >20 grams of carbohydrate, during real-world use of the MiniMedTM 670G system, has a significant influence on postprandial glycemic outcome
- The data also suggests that pre-meal bolusing is potentially more impactful in producing tighter postprandial control than a more aggressive carb-to-insulin ratio
- Initiating meal bolus delivery prior to meal consumption remains the recommendation for MiniMed™ 670G when the Auto Mode feature is enabled

References

- 1. Garg SK, et al. Diabetes Technol Ther. 2017;19:155-163.
- 2. Bergenstal R., et al. *JAMA*. 2016; 316: 1407-1408.

WARNING: Indicated for type 1 diabetes patients ≥14 years. Prescription required. Medtronic performed an evaluation of the MiniMed™ 670G closed-loop system and determined that it may not be safe for use in children under the age of 7 because of the way that the system is designed and the daily insulin requirements. Therefore, this device should not be used in anyone under the age of 7 years old. This device should also not be used in patients who require less than a total daily insulin does of 8 units per day because the device requires a minimum of 8 units per day to operate safely.

