Combinatory use of 123I-FP-CIT-SPECT and cardiac 123I-metadobenzylguanidine scintigraphy for the diagnosis of Parkinsonisms

Yoshiki Niimi, Shinji Ito, Kenichiro Murata, Seiko Hirota, Chika Hikichi, Tomomasu Ishikawa, Toshiki Maeda, Ryunosuke Nagao, Kouichi Kikuchi, Sayuri Shima, Yasuaki Mizutani, Akihiro Ueda, and Tatsuro Mutoh

Department of Neurology, Fujita Health University School Of Medicine

Introduction

- Parkinson’s disease (PD) is the second most common neurodegenerative disorder in an aging population.
- Early intervention is beneficial but early diagnosis is still difficult.
- Single-photon emission computerized tomography of the dopamine transporter (DAT-SPECT) is useful for differentiating parkinsonian syndromes from other movement disorders, Cardiac 123I-metadobenzylguanidine (MBG) scintigraphy is useful for differentiating PD from other parkinsonian syndromes.
- Recent studies indicated a possible usefulness of the striatal asymmetry index (SAI) of DAT-SPECT for differentiating parkinsonian syndromes.

Methods

Participants

Consecutive patient with parkinsonism
August 2014 ~ July 2016 at FHU (N=84)

Excluded diabetes mellitus, heart disease, family history of PD (N=10)

Excluded MBG Positive (N=37)

Excluded DAT Negative (N=5)

Group 1: PD (N=13)

Group 2: MSA (N=4), PSP (N=3), CBD (N=5) UP (N=7)

* SBR (specific binding ratio) of the striatum was semi-quantitatively calculated using DAT VIEW software (Nihon Medi-Physics, Tokyo, Japan). The SAI of the SBR was also calculated automatically with the software using the following formula:

$$\text{SAI} = \frac{| \text{SBR}_{\text{left}} - \text{SBR}_{\text{right}} |}{\text{SBR}_{\text{left}} + \text{SBR}_{\text{right}}} \times 10$$

Please refer reference (4) for more details!

Clinical features

All patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PD</th>
<th>CBD</th>
<th>PSP</th>
<th>MSA</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Age at onset, mean ± SD (range, y)

- PD: 67.6 ± 14.8 (42-85)
- CBD: 65.4 ± 7.5 (54-72)
- PSP: 71.0 ± 12.8 (57-82)
- MSA: 69.0 ± 7.9 (62-80)
- UP: 64.4 ± 15.9 (33-82)

Male/Female

- PD: 5/8
- CBD: 1/4
- PSP: 1/2
- MSA: 1/3
- UP: 3/4

Interval from onset to DAT-SPECT, mean ± SD (range, m)

- PD: 40.5 ± 31.0 (10-120)
- CBD: 68.5 ± 52.8 (11-120)
- PSP: 66.3 ± 35.3 (34-104)
- MSA: 28.3 ± 11.1 (13-37)
- UP: 59.0 ± 31.3 (8-98)

Follow-up period from diagnosis, mean ± SD (range, m)

- PD: 16.4 ± 6.1 (10-30)
- CBD: 15.4 ± 8.2 (7-29)
- PSP: 14.3 ± 11.0 (11-31)
- MSA: 12.2 ± 1.3 (11-14)
- UP: 4.8 ± 2.2 (8-22)

PD patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Parkinson’s Disease patients (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Hoehn & Yahr (H&Y) stage</td>
<td>2.15±0.8</td>
</tr>
<tr>
<td>1(3), 2(5), 3(5), 4(0), 5(0)</td>
<td></td>
</tr>
<tr>
<td>Patient number of each H&Y stage</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Subtype (number)</td>
<td>Akineti-rigid (6)</td>
</tr>
<tr>
<td>Tremor-dominant (7)</td>
<td></td>
</tr>
<tr>
<td>Non motor symptoms (number)</td>
<td>Constipation (3), Anosmia (2), Orthostatic hypotension (3), Hallucination (1), Memory impairment (1)</td>
</tr>
</tbody>
</table>

Results

- SAI = | (SBRleft − SBRright) | / (SBRleft + SBRright) | × 10
- SAI = 15.2
- ROC curve analysis

Conclusions

- PD patients in early stage showed more symmetry in their DAT-SPECT examination.
- The combined use of the MBG scintigraphy and the SAI on DAT-SPECT is useful to make a differential diagnosis of the early phase Parkinson’s disease.
- Further investigations using a larger cohort of patients over a longer period is necessary to confirm the applicability of the present data in future.

References

PD: Parkinson's disease, MSA: multiple system atrophy, PSP: progressive supranuclear palsy, CBD: corticobasal degeneration, UP: unclassified parkinsonian syndrome, ROC: receiver operating characteristic curve, AUC: area under the curve

COI: none

contact: y-niimi@fujita-hu.ac.jp