Introduction

DNA damage and repair is a critical domain of many neurodegenerative diseases. In this study, we focused on RpA1, a candidate key molecule in polyQ disease pathologies, and tested the therapeutic effect of adeno-associated virus (AAV) vector expressing RpA1 on mutant Ataxin-1 (Atxn1-KI) mice. We found significant effects on motor functions, normalized DNA damage markers (pH2AX and 53BP1), and improved Purkinje cell morphology, effects that lasted for 50 weeks following AAV-RpA1 infection. In addition, we confirmed that AAV-RpA1 indirectly recovered multiple cellular functions such as RNA splicing, transcription and cell cycle as well as abnormal morphology of dendrite and dendritic spine of Purkinje cells in Atxn1-KI mice. All these results suggested a possibility of gene therapy with RpA1 for SCA1.

RpA1 effect in SCA pathology

DNA damage and repair is a critical domain of many neurodegenerative diseases. In this study, we focused on RpA1, a candidate key molecule in polyQ disease pathologies, and tested the therapeutic effect of adeno-associated virus (AAV) vector expressing RpA1 on mutant Ataxin-1 (Atxn1-KI) mice. We found significant effects on motor functions, normalized DNA damage markers (pH2AX and 53BP1), and improved Purkinje cell morphology, effects that lasted for 50 weeks following AAV-RpA1 infection. In addition, we confirmed that AAV-RpA1 indirectly recovered multiple cellular functions such as RNA splicing, transcription and cell cycle as well as abnormal morphology of dendrite and dendritic spine of Purkinje cells in Atxn1-KI mice. All these results suggested a possibility of gene therapy with RpA1 for SCA1.

Methods

Results

Conclusions

The therapeutic effect of the RpA1 overexpression observed in the SCA1 fly model was observed also in the SCA1 mouse model.

- AAV-RpA1 recovers DNA damage.
- Dendritic shrinkage.
- Spine abnormalities.
- Motor dysfunction.

All these results suggested a possibility of gene therapy with RpA1 for SCA1.

Acknowledgements

We thank Dr. Huda Y. Zoghbi (Baylor College of Medicine) for Ataxin1-KI mice.

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Foundation of Synapse and Neurocircuit Pathology) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; a grant-in-aid for scientific research from Japan Society for the Promotion of Science (26283213); a CREST grant from the Japan Science and Technology Agency; grants for research on intractable diseases from Japan Agency for Medical Research and Development (15ek0109048h0002, 16ek0109077h0202).