Efficacy of olanzapine for the prophylaxis and rescue of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis

Ronald Chow¹, Leonard Chiu¹, Marko Popovic¹, Rudolph Navari², Nathan Shumway³, Nicholas Chiu¹, Henry Lam¹, Milica Milakovic¹, Mark Pasetka¹, Sherlyn Vuong¹, Edward Chow¹, Carlo DeAngelis¹ Sunnybrook

HEALTH SCIENCES CENTRE

¹Sunnybrook Odette Cancer Centre, Toronto, Canada ²University of Alabama Birmingham School of Medicine, Birmingham, USA ³San Antonio Military Medical Center, San Antonio, USA

Objective

Investigate the efficacy of olanzapine in relation to other antiemetics in the prophylaxis and rescue of CINV, as reported by randomized controlled trials (RCT)

- A literature search was conducted in Ovid MEDLINE from 1946 to June Week 1 2015, EMBASE and EMBASE Classic from 1947 to 2015 Week 24, and the Cochrane Central Register of Controlled Trials up until 2015
- RCTs were included if they compared olanzapine to other antiemetics in either a prophylaxis or breakthrough setting, with at least one of the endpoints – no emesis, or no nausea
- The primary endpoints were the percentage of patients achieving no emesis or no nausea in the acute, delayed and overall phases

Results

• 13 eligible RCTs were identified – 10 in the preventative setting and 3 in the breakthrough setting

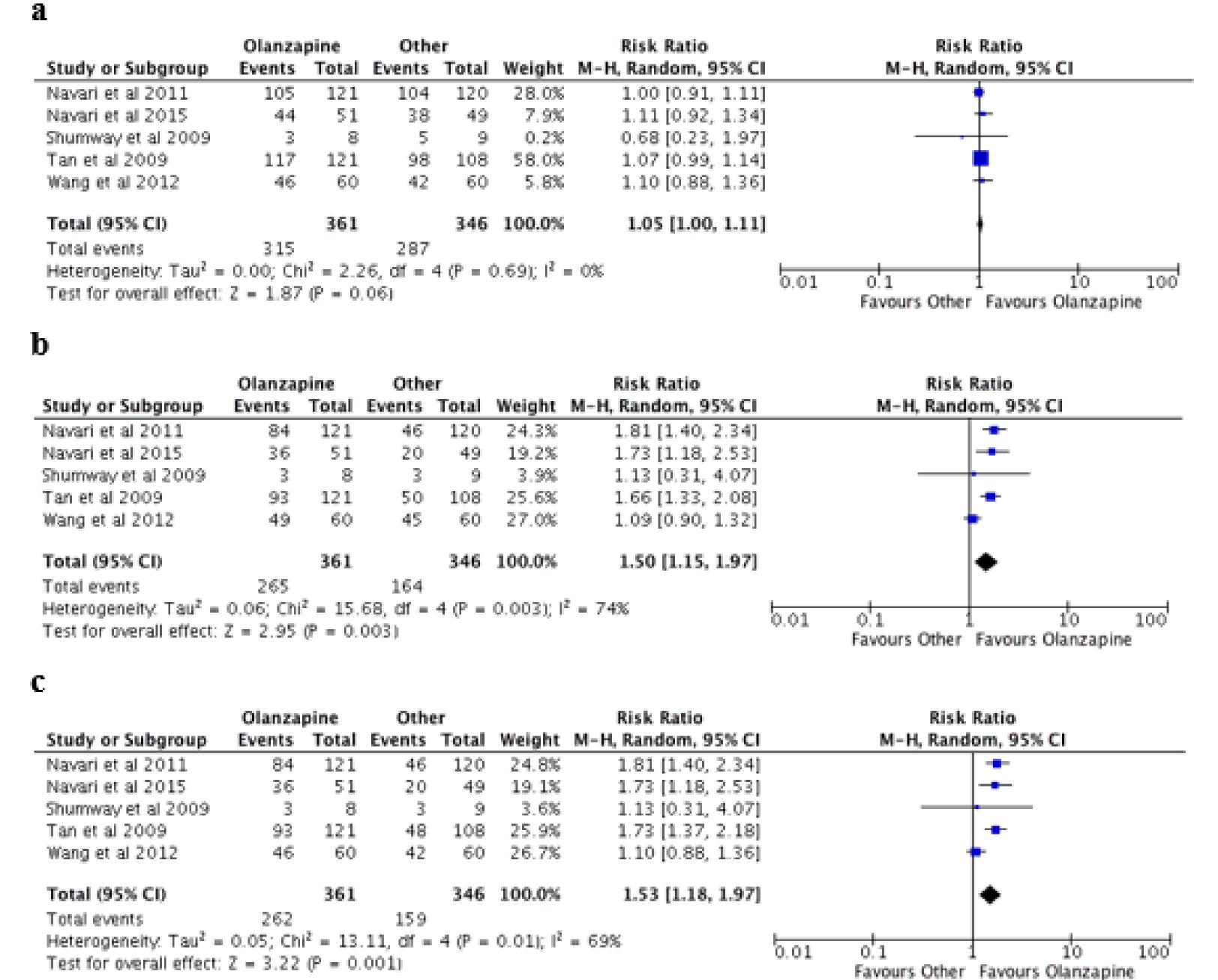
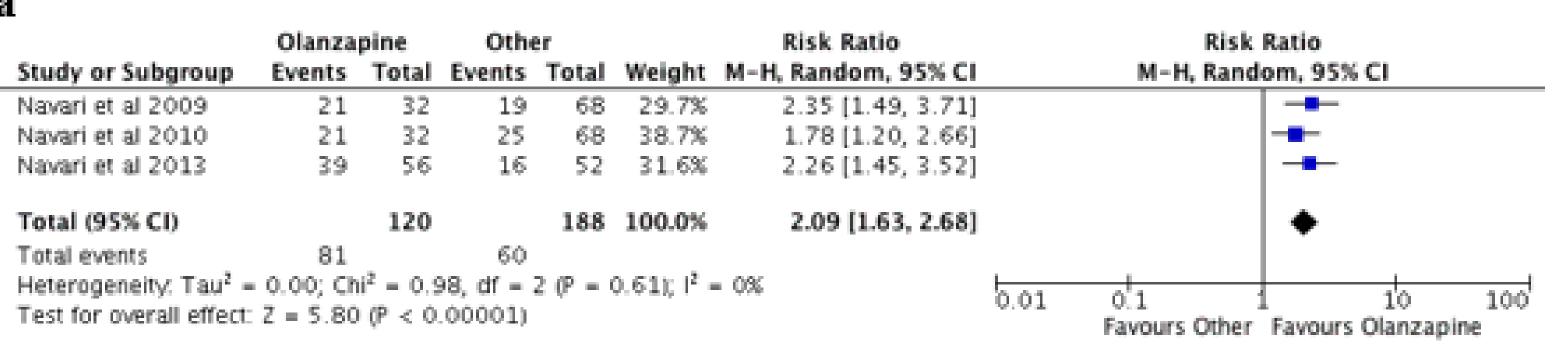



Fig. 2 a Efficacy of olanzapine compared with other standard antiemetics in the prophylaxis of chemotherapy-induced nausea and vomiting—no nausea in the acute phase b No nausea in the delayed phase c No nausea in the overall phase

 \mathbf{a}

a Risk Ratio Olanzapine Other Risk Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI Mao et al 2011 1.18 [1.03, 1.36] 1.15 [0.96, 1.39] Mizukami et al 2014 1.04 [0.96, 1.13] 50 18.6% Mukhopadhyay et al 2015 1.12 [1.03, 1.21] Navari et al 2011 120 19.0% 1.05 [0.90, 1.24] Navari et al 2015 10.0% 1.69 [0.73, 3.88] Shumway et al 2009 0.6% 108 20.5% 1.01 [0.94, 1.08] Tan et al 2009 Wang et al 2012 1.48 [1.06, 2.06] Wang et al 2015 1.15 [0.96, 1.39] Total (95% CI) 1.10 [1.03, 1.17] 506 100.0% 521 Total events Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 16.53$, df = 8 (P = 0.04); $I^2 = 52\%$ 0.01 Test for overall effect: Z = 2.89 (P = 0.004) Favours Other Favours Olanzapine

	Olanzapine		Oth	Other		Risk Ratio	Risk Ratio	
Study or Subgroup	Events Total		Events Total		Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Mao et al 2011	39	46	23	46	9.7%	1.70 [1.24, 2.32]	-	
Mizukami et al 2014	22	22	16	22	11.1%	1.36 [1.05, 1.77]	•	
Mukhopadhyay et al 2015	48	50	21	50	9.2%	2.29 [1.64, 3.18]		
Navari et al 2011	93	121	88	120	14.9%	1.05 [0.91, 1.21]	+	
Navari et al 2015	39	51	36	49	12.3%	1.04 [0.83, 1.31]	+	
Shumway et al 2009	5	8	5	9	2.8%	1.13 [0.51, 2.49]		
Tan et al 2009	102	121	73	108	14.8%	1.25 [1.07, 1.45]	•	
Wang et al 2012	46	60	32	60	10.8%	1.44 [1.09, 1.89]		
Wang et al 2015	40	42	34	42	14.4%	1.18 [1.00, 1.38]	-	
Total (95% CI)		521		506	100.0%	1.31 [1.14, 1.52]	•	
Total events	434		328					
Heterogeneity: Tau2 = 0.03	$Chi^2 = 2$	7.64, d	f = 8 (P	= 0.00	$05); I^2 = 3$	71%	0.1 1 10 10	
Test for overall effect: Z = 3				- 0.00	V21, 1	0.01	0.1 1 10 : Favours Other Favours Olanzapine	

С							
	Olanza	pine Other		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Lu et al 2013	22	30	11	30	6.6%	2.00 [1.19, 3.36]	
Mao et al 2011	38	46	15	46	7.9%	2.53 [1.64, 3.92]	
Mizukami et al 2014	22	22	15	22	10.7%	1.45 [1.09, 1.94]	
Mukhopadhyay et al 2015	47	50	20	50	9.5%	2.35 [1.66, 3.32]	
Navari et al 2011	93	121	88	120	13.5%	1.05 [0.91, 1.21]	+
Navari et al 2015	39	51	36	49	12.0%	1.04 [0.83, 1.31]	+
Shumway et al 2009	5	8	5	9	3.8%	1.13 [0.51, 2.49]	
Tan et al 2009	102	121	73	108	13.4%	1.25 [1.07, 1.45]	•
Wang et al 2012	40	60	27	60	9.8%	1.48 [1.06, 2.06]	-
Wang et al 2015	38	42	33	42	12.8%	1.15 [0.96, 1.39]	+
Total (95% CI)		551		536	100.0%	1.41 [1.18, 1.68]	•
Total events	446		323				
Heterogeneity: Tau ² = 0.06;	$Chi^2 = 4$	0.47, d	f = 9 (P	< 0.00	001); l² =	78%	0.01 0.1 1 10 100
Test for overall effect: Z = 3.	.76 (P = 1	0.0002)				Favours Other Favours Olanzapine

Fig. 1 a Efficacy of olanzapine compared with other standard antiemetics in the prophylaxis of chemotherapy-induced nausea and vomiting—no emesis in the acute phase **b** No emesis in the delayed phase c No emesis in the overall phase

Fig. 3 a Efficacy of olanzapine compared with other standard antiemetics in the rescue of breakthrough chemotherapy-induced nausea and vomiting—no emesis.

Absolute risk difference between olanzapine and other antiemetic intervention arms for all included chemotherapy-induced nausea and vomiting endpoints

Endpoint	Absolute risk difference	95% confidence	Test for overall	Heterogeneity test	Satisfies MASCC/ESMO antiemetic guidelines
	(%)	interval (%)	effect		requirement
No emesis, acute phase (prevention)	9	4-14	p=0.0007	p=0.08	Approaching
No emesis, delayed phase (prevention)	21	10-33	p=0.0003	p<0.0001	Yes
No emesis, overall phase (prevention)	24	12-36	p=0.0001	p<0.0001	Yes
No nausea, acute phase (prevention)	4	0-9	p=0.06	p=0.64	No
No nausea, delayed phase (prevention)	24	13-35	p<0.0001	p=0.06	Yes
No nausea, overall phase (prevention)	24	14-35	p<0.0001	p=0.07	Yes
No emesis (breakthrough)	36	25-46	p<0.0001	p=0.74	Yes

No nausea, overall phase (prevention)	24	14-35	p<0.0001	p=0.07	Yes
No emesis (breakthrough)	36	25-46	p<0.0001	p=0.74	Yes
Endpoint	Absolute risk	95%	Test for	Heterogeneity	Satisfies MASCC/ESMO
	difference	confidence	overall	test	antiemetic guidelines
	(%)	interval (%)	effect		requirement
No emesis, overall phase (5 mg)	34	19-49	p<0.0001	p=0.75	Yes
No emesis, acute phase (10 mg)	7	3-14	p=0.002	p=0.07	No
No emesis, delayed phase (10 mg)	20	8-33	p=0.002	p<0.00001	Yes
No emesis, overall phase (10 mg)	22	8-36	p=0.003	p<0.00001	Yes
No nausea, acute phase (10 mg)	4	0-9	p=0.06	p=0.64	No
No nausea, delayed phase (10 mg)	24	13-35	p<0.0001	p=0.06	Yes
No nausea, overall phase (10 mg)	24	14-35	p<0.0001	p=0.07	Yes
No emesis, acute phase (Dex)	7	2-12	p=0.004	p=0.16	No
No emesis, delayed phase (Dex)	22	7-37	p=0.005	p<0.00001	Yes
No emesis, overall phase (Dex)	26	11-41	p=0.0009	p<0.00001	Yes
No nausea, acute phase (Dex)	4	-1-9	p=0.09	p=0.47	No
No nausea, delayed phase (Dex)	30	22-38	p<0.00001	p=0.73	Yes
No nausea, overall phase (Dex)	31	23-38	p<0.00001	p=0.71	Yes
No emesis, acute phase (No Dex)	16	5-28	p=0.006	p=0.39	Yes
No emesis, delayed phase (No Dex)	18	7-28	p=0.0008	p=0.37	Yes
No emesis, overall phase (No Dex)	16	5-28	p=0.006	p=0.39	Yes

Conclusions

- In regimens where dexamethasone was not included, olanzapine was not statistically superior to non-olanzapine regiments in two of the three analysed parameters – no emesis in the acute and overall phase
 - The observation that olanzapine is superior in all three parameters in the presence of dexamethasone may mean that some of the increased efficacy should be attributed to dexamethasone
- Olanzapine was found to be statistically and clinically superior to other breakthrough medications such as prochlorperazine and metochlopramide in the only assessable endpoint – no emesis
- Olanzapine is more efficacious than other standard antiemetics in the preventative and breakthrough setting
- We recommend the consideration of the use of a 5-mg dose of olanzapine in the prophylaxis of CINV as analysis shows that a 5-mg dose is equally efficacious to a 10-mg dose but may carry an added safety benefit

We thank the generous support of Bratty Family Fund, Michael and Karyn Goldstein Cancer Research Fund, Joey and Mary Furfari Cancer Research Fund, Pulenzas Cancer Research Fund, Joseph and Silvana Melara Cancer Research Fund, and Ofelia Cancer Research Fund.