Systematic review and individual patient data based meta-analysis of Palonosetron trials for chemotherapy-induced nausea and vomiting

Aapro M¹), Celio L²⁾, Okada Y³⁾, Oba K³⁾, Furukawa N⁴⁾, Kosaka Y⁵⁾, Okita K⁶⁾, Yuki S⁷⁾, Komatsu Y⁷⁾

1) Clinique de Genolier; 2) Fondazione IRCCS Istituto Nazionale Tumori; 3) The University of Tokyo; 4) Nara Prefectural Western Medical Center; 5) Kitasato University; 6) Sapporo Medical University; 7) Hokkaido University Hospital

ABSTRACT

Introduction

Several clinical trials have evaluated the need for corticosteroid-containing antiemetic regimens on the days after the first 24 hours to control delayed chemotherapy-induced nausea and vomiting (CINV) during moderate emetogenic chemotherapy (MEC) or anthracycline and/or cyclophosphamide (AC)-containing chemotherapy.

Objectives

To evaluate whether the dexamethasone-sparing regimen is associated with a significant loss in overall antiemetic control using individual patient data (IPD) meta-analysis.

Methods

We conducted systematic review for any randomized trials reporting CINV outcomes for a single 1-day-dexamethasone (D1 group) containing antiemetic regimen in chemotherapy-naive adult patients scheduled to receive a MEC or AC-containing chemotherapy, compared with additional dexamethasone on days 2 and 3 (D3 group). The primary endpoint was complete response (CR) in the 5-day study period. Secondary endpoints were CR rates in 0–24 h and CR rates in 24–120 h; complete control in each period.

Results

All 5 eligible studies (N=1194) were enrolled in the meta-analysis. Overall, D1 group was not significantly inferior to D3 group in CR rate as well as complete control rate [pooled risk difference in CR rate -1.5%, 95% confidence interval -7.1–4.0%; in delayed CR rate -2.4%, 95% confidence interval -7.7–4.0%; in delayed CR rate -2.4%, 95% regimen and patient characteristics (sex, age category (<60 or 60 years), and alcohol nsumption).

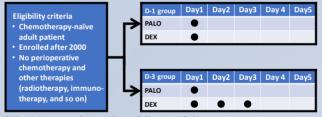
Conclusions Conclusions These results strongly suggest that the dexamethasone-sparing regimen is not associated with a These results strongly suggest that the dexamethasone-sparing regimen is not associated with a significant loss in overall antiemetic control in an adult patient undergoing MEC or ACcontaining chemotherapy, irrespective of patient baseline characteristics.

METHODS

Background

•CINV severely influences patients' quality of life, and compliance with chemotherapy (Aapro 2007).

Dexamethasone (DEX) is frequently used for the control of CINV and is administered on day 1-3 with palonosetron or NK1 receptor antagonist though DEX has several adverse effects(insomnia [45%], GI symptoms [27%], etc). Continued use of DEX is also known to reduce bone mineral density.

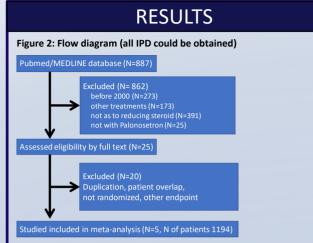

•The current recommendations for the prevention of AC/MEC from NCCN, ASCO and MASCC for AC and MEC containing chemotherapy are controversial (NCCN 2015, ASCO2016, MASCC 2016).

•Several randomized controlled trials were conducted to evaluate whether the dexamethasone-sparing regimen is associated with a significant loss in overall antiemetic control in several countries.

•Systematic review and IPD based meta-analysis was planned in this study group.

Methods

•Following trial design were eligible and searched for the IPD metaanalysis (Figure 1). Pubmed/MEDLINE were searched by KO and YO.



- ●The Primary endpoint: Overall (Day1 5) CR
 - Secondary endpoints: Overall complete control (CC), Acute CR and CC, delayed CR and CC
 - Subgroup analysis of Chemotherapy regimen (AC, MEC), Age category (≥60 or <60), Sex, Alcohol drinking habit(YES,NO), and PS (0, 1 or more) were pre-planned.

• The pooled risk difference of DEX compared to Placebo for CR was 16% (95% CI, 13% to 19%) for acute phase and 16% for delayed phase (Ioannidis JCO 2000).

-8% (half of the 16% risk difference) is a reasonable statistical non-inferiority margin in the comparison between 3-day DEX regimen and DEX-sparing regimen.

•Common risk difference was estimated through a fixed effect model. Heterogeneity were assessed using treatment-by-trial interaction model and I² statistics.

Figure 3: Forest plot for CR overall

•Common risk difference was -2% (95% CI; -7% to 4%; P = 0.590). The lower 95%CI is above of the non-inferiority margin -8% and noninferiority was shown.

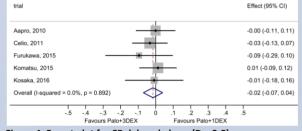
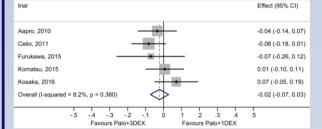



Figure 4: Forest plot for CR delayed phase (Day2-5) •Common risk difference was -2% (95% CI; -7% to 3%; P = 0.387). The lower 95%CI is above of the non-inferiority margin -8% and noninferiority was shown.

Table 1: Subgroup analysis for CR overall and interaction

· · · · · · · · · · · · · · · · · · ·					
	subgroup	N	risk difference [95% Cl], %		Interaction P
Sex	Man	289	-2.2%	[-12.3, 7.9]	0.920
	Woman	805	-1.8%	[-8.3, 4.8]	
Age	<60	574	-4.7%	[-12.6, 3.2]	0.196
	≥60	520	2.2%	[-5.5, 9.8]	
Chemo-	AC	467	-2.5%	[-11.0, 6.1]	0.800
therapy	MEC	627	-1.0%	[-8.3, 6.2]	
Alcohol	YES	295	-6.5%	[-16.7, 3.7]	0.283
	NO	730	-0.7%	[-7.6, 6.1]	

CONCLUSIONS

These results strongly suggest that the dexamethasone-sparing regimen is not associated with a significant loss in overall antiemetic control in an adult patient undergoing MEC or AC-containing chemotherapy, irrespective of patient baseline characteristics. These data contribute to simplify antiemetic regimens and spare many patients from the potential side-effects of multiple-day corticosteroids.

REFERENCES

- Aapro M. Palonosetron as an anti-emetic and anti-nausea agent in oncology. Ther Clin Risk Manag. 2007;3:1009–20.
- Ioannidis JPA, et al. Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting: A meta-analysis of randomized evidence. J Clin Oncol. 2000;18:3409–22.
- NCCN Clinical Practice Guidelines in Oncology. Antiemesis, version 2. Fort Washington, PA: Harborside Press, 2015.
- Hesketh PJ. Bohlke K. Lyman GH. Basch E. Chesney M. Clark-Snow RA. et al. Antiemetics: ASCO Focused Guideline Update. J Clin Oncol. 2016:34:381-6.
- Roila F, et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol. 2016;27(Suppl 5):v119-v133.
- Aapro M, et al. Double-blind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol. 2010;21:1083–8.
- Celio L, et al. Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following moderately emetogenic chemotherapy: A randomized, multicenter, phase III trial. Support Care Cancer. 2011;19:1217–25.
- Komatsu Y, et al. Open-label, randomized, comparative, phase III study on effects of reducing steroid use in combination with Palonosetron. Cancer Sci. 2015;106:891–5. Furukawa N, et al. Palonosetron in combination with 1-day versus 3-day dexamethasone to prevent nausea and vomiting in patients receiving paclitaxel and carboplatin. Support Care Cancer. 2015;23:3317-22.
- Kosaka Y, et al. Phase II randomized, controlled trial of 1 day versus 3 days of dexamethasone combined with palonosetron and aprepitant to prevent nausea and vomiting in Japanese breast cancer patients receiving anthracycline-based chemotherapy. Support Care Cancer. 2016;24:1405–11. •