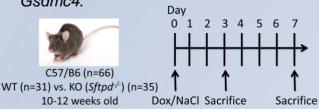
EFFECT OF SURFACTANT PROTEIN-D ABLATION ON CHEMOTHERAPY INDUCED GASTROINTESTINAL TOXICITY IN MICE

Rathe, M¹, Von Huth, S.L², Sorensen, G.L², Holmskov, U², Husby, S¹

¹Odense University Hospital, H.C. Andersen Children's Hospital, Odense, Denmark ²Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark

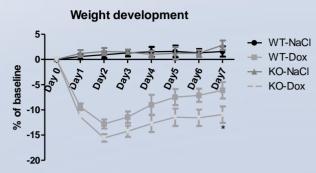
INTRODUCTION


- Surfactant protein D (SP-D) is an innate host defense molecule produced by epithelial cells.
- SP-D has recently been shown to be differentially regulated in the gastrointestinal mucosa of chemotherapy-treated piglets.
- SP-D may be involved in the homeostasis and protection of mucosal surfaces after chemotherapy.

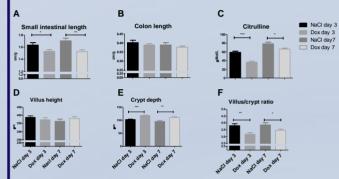
OBJECTIVES

To investigate the effect of SP-D ablation on chemotherapy induced gastrointestinal toxicity and inflammation in a murine model.

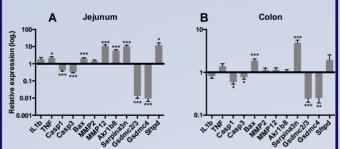
METHODS


- SP-D knockout (KO) mice and wildtype (WT) littermates were treated with doxorubicin (20 mg/kg) or saline by i.p. injection and sacrificed at day 3 or at day 7 post-administration.
- Gastrointestinal toxicity and inflammation was evaluated by weight change, bone marrow cellularity, citrulline levels, intestinal length, histopathological evaluation and quantitative real-time PCR (RT-qPCR) of key genes related to chemotherapy induced mucositis, inflammation, apoptosis and repair of damaged epithelium including *Tnf*, *IL-1β*, *Casp-1*, *Casp-3*, *Bax*, *Mmp-2*, *Mmp-12*, *Serpina3n*, *Akr1b8*, *Gsdmc2*, *Gsdmc3*, *Gsdmc4*.

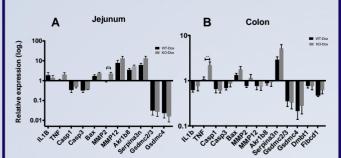
CONCLUSIONS


- SP-D had limited effect on gastrointestinal toxicity after induction of mucositis
- Increased Tnf and Mmp2 expression in the intestine indicates that SP-D may modulate the inflammatory response after chemotherapy with possible implications for the ensuing tissue injury.

RESULTS



Body weight changes throughout the experiment after doxorubicin chemotherapy


Values are shown as means and SEM. * p<0.05, (Two-way ANOVA of grouped data.)

(A) Small intestinal and (B) colon length, (C) citrulline levels, (D) villus heights, (E) crypt depth and (F) and villus/crypt ratios in doxorubicin treated mice across genotypes compared with saline controls and sacrificed at day 3 or day 7. All values are means and SEM. *P<0.05, ** P<0.01, ***P<0.001 as analyzed by the unpaired, two-tailed t test. No genotype related differences detected.

Relative expression across genotypes of genes related to GI inflammation and toxicity in **(A)** jejunum and **(B)** colon of Doxorubicin-treated mice sacrificed at day 3, normalized to saline-treated controls. Relative expression determined by RT-qPCR analysis, and normalized to *GAPDH* and *TBP*. Data are presented as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 (Mann-Whitney test).

Genotype specific relative expression of genes related to GI inflammation and toxicity in **(A)** jejunum and **(B)** colon of Doxorubicin-treated wildtype (WT-Dox) and SP-D knockout (KO-Dox) mice sacrificed at day 3, normalized to saline-treated WT controls. Relative expression determined by RT-qPCR analysis, and normalized to *GAPDH* and *TBP*. Data are presented as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 (Mann-Whitney test).

