INCORPORATION OF MODELS OF CGM SENSOR ERROR AND FAULTS AFFECTING CGM SENSORS IN THE UVA/PADOVA TYPE-1 DIABETIC SIMULATOR: **ASSESSMENT ON CLINICAL DATA**

DIPARTIMENTO **DI INGEGNERIA**

Y. Leal, PhD¹, S. Del Favero, PhD², M. Vettoretti, MSc², R. Visentin, PhD², A. Facchinetti, PhD², C. Cobelli, PhD²

DELL'INFORMAZIONE¹ Service of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona, Girona, Spain ² Department of Information Engineering, University of Padova, Padova, Italy e-mail: yleal@idibgi.org

Institut d'Investigació **Biomèdica** de Girona **Dr. Josep Trueta**

BACKGROUND AND AIM

Recently, a new model of the measurement errors in continuous glucose monitoring (CGM) sensor was identified for $Dexcom^{\mathbb{R}}$ G4TM Platinum [1]. Furthermore, a model for the faults affecting CGM sensors (e.g. disconnections and compression artifacts (CA)) was proposed [2]. The inclusion of these two components in the UVA/Padova Type-1 diabetic simulator is critical for accurate in silico testing of CGM-based applications like the artificial pancreas. In this work, both models are incorporated into the most recent version of the simulator and simulated data are compared against clinical data [3].

RESULTS

OCGM Sensor Error

Parameter	Real Data	Simulated Data		Parameter	Rea Dat	al :a	Simula Dat	ated ta		
Sensors Traces (n)	108	108		Sensors Traces (n)	10	8	108	8		
Number of paired samples	13631	14329		Number of paired samples	1363	31	1432	29		
%20/20 mg/dL (PAGE (%))	81,6	77,3			Median Ove	IQR rall	Median	IQR	p	
MAD (mg/dL)	21,0 (20,8)	21,2 (18,5)		MAD (mg/dL)	19,8	10,2	19,0	9,5	0,94	
MARD (%)	13,3 (12,9)	13,4 (11,5)		MARD (%)	12,5	6,9	12,7	6,4	0,63	
CEG-Zone-A (%)	80,2	77,2		CEG-Zone-A (%)	81,2	22,2	80,0	20,4	0,12	
Table 1. Com		Hypoglycemic								
notrics hotwoo	n tha ra	culto ron	orted on [3]	MAD (mg/dL)	10,9	7,5	10,0	21,9	0,23	
		suits rep		MARD (%)	18,1	14,0	16,7	36,2	0,30	
and simulated c	lata.			CEG-Zone-A (%)	88,6	34,4	85,7	57,5	0,21	
				Normoglycemic						
)	Accuracy Ass	sessment		MAD (mg/dL)*	15,3	9,3	17,9	8,6	0,01	
)				MARD (%)	13,1	8,3	13,6	7,1	0,56	
)				CEG-Zone-A (%)	78,2	25,0	77,2	20,9	0,80	
) —					Hyperglycemic					
				MAD (mg/dL)	23,8	16,2	20,8	15,5	0,23	
				MARD (%)	10,1	6,8	9,5	6,1	0,76	
0	+	+ + 	+ +	CEG-Zone-A (%)	89,7	23,6	90,9	26,9	0,98	
	Severe Hyperglycemic									
0				MAD (mg/dL)	28,6	18,3	25,2	14,8	0,36	
0 MAD Simulator Data MAD Real Data	MARD Simulator Data	MARD Real Data CEG-A	Simulator Data CEG-A Real Data	MARD (%)	8,3	5,6	/,9	4,7	0,62	
	CEG-Zone-A (%)	100,0	10,0	100,0	10,0	0,39				

Parameter	Real Data	Simulated Data		Parameter	Real Data 108		Simulated Data 108				
Sensors Traces (n)	108	108		Sensors Traces (n)							
Number of paired samples	13631	14329		Number of paired samples	1363	31	1432	29			
%20/20 mg/dL (PAGE (%))	81,6	77,3			Median Over	IQR I rall	Median	IQR	p		
MAD (mg/dL)	21,0 (20,8)	21,2 (18,5)		MAD (mg/dL)	19,8	10,2	19,0	9,5	0,94		
MARD (%)	13,3 (12,9)	13,4 (11,5)		MARD (%)	12,5	6,9	12,7	6,4	0,63		
CEG-Zone-A (%)	80,2	77,2		CEG-Zone-A (%)	81,2	22,2	80,0	20,4	0,12		
Table 1. Com	Table 1. Comparison of overall performance					Hypoglycemic					
motrics hotwood	on tha ra	culto ron	orted on [3]	MAD (mg/dL)	10,9	7,5	10,0	21,9	0,23		
		suits rep		MARD (%)	18,1	14,0	16,7	36,2	0,30		
and simulated c	lata.			CEG-Zone-A (%)	88,6	34,4	85,7	57,5	0,21		
				Normoglycemic							
90	Accuracy Ass	sessment		MAD (mg/dL)*	15,3	9,3	17,9	8,6	0,01		
80 -				MARD (%)	13,1	8,3	13,6	7,1	0,56		
70 -				CEG-Zone-A (%)	78,2	25,0	77,2	20,9	0,80		
				Hyperglycemic							
50 - +				MAD (mg/dL)	23,8	16,2	20,8	15,5	0,23		
40 + +				MARD (%)	10,1	6,8	9,5	6,1	0,76		
30			+	CEG-Zone-A (%)	89,7	23,6	90,9	26,9	0,98		
20				Severe Hyperglycemic							
10				MAD (mg/dL)	28,6	18,3	25,2	14,8	0,36		
0 MAD Simulator Data MAD Real Data	MARD Simulator Data	MARD Real Data CEG-A	Simulator Data CEG-A Real Data	MARD (%)	8,3	5,6	7,9	4,7	0,62		
				CEC Zono A (0/1)			100 0				

DATABASE AND SCENARIOS

O Subjects

108 traces of subjects wearing the Dexcom $G4^{TM}$ Platinum (DG4P) and undergoing an 1 day hospital admission are available. Blood glucose samples were collected every 15 ± 5 min using YSI[®]. The accuracy of these CGM measurements was compared with the accuracy of the simulated CGM in 108 traces obtained replicating the clinical protocol from 72 in silico type 1 diabetic (T1DM) adults by using the UVA/Padova T1DM simulator [4].

METHODS

Figure 1 and Table 2. Metrics of all matched pairs for each individual sensor was evaluated. Using a standard statistical test method, the nonparametric two-sample test, the differences between the real data distributions and the simulator data were found to not be statistically significant. Only the differences on the MAD for the normoglycemic range was found to be statistically significant. Overall statistics are showed on the table and box plots.

OCGM Sensor Disconnections

Figure 2. In total 997 disconnections occurred on real data vs. 1056 on simulated ones. Figure shows the normalized histogram of the duration of the disconnections (each bar has height given by the number of occurrences divided by the total number of events). 72.6% (left) vs. 73.3% (right) of them consist of only one sample missing (10-min gap). 90.2% (left) vs. 89.1% (right) of them lasted ≤ 20 min.

OCGM Sensor Compression Artifacts

Figure 3. Example of two compression artifacts obtained with the UVA/PADOVA simulator equipped with the two models.

CONCLUSIONS AND FUTURE WORK

•An autoregressive model to describe the additive measurement noise **OCGM Sensor Disconnections: Markov Model**

•C is the regularly working state

•D₁ describes the disconnections lasting one sample only (i.e., 10-min gap in the data)

D_{>2} describes longer disconnections.

•Arches indicate the transition between 2 states, and $1 - \alpha, \alpha, \beta_1, \beta_2, 1 - \beta_1, 1 - \beta_2$ represent the transition probability.

OCGM Sensor Compression Artifacts

•A is the maximum amplitude A reachable by the CGM signal deviation

• P is the amplitude (in mg/dL) of the event

•T is the time constant of the system. **OAssessment Criteria**

MARD, MAD and CEG-Zone-A were used for assessment. Frequency and

duration of real and simulated disconnections were compared.

- Results suggest that the UVA/PADOVA simulator equipped with the two models are able to reproduce the clinical trial observations.
- Next steps will include to complete the statistical analysis of real and simulated compression artifacts, in order to compare frequency, duration and amplitude. Furthermore, to test the UVA/PADOVA simulator equipped with the two models with other real datasets.

REFERENCES

- 1. Facchinetti A., et al. "Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices", Med Biol Eng Comput. 53 (2015) 1259-69.
- 2. Facchinetti A., et al. "Modeling Transient Disconnections and Compression Artifacts of Continuous Glucose Sensors", Diabetes Technol Ther. 18 (2016) 264-72.
- 3. Christiansen M., et al. "A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system", Diabetes Technol Ther. 15 (2013) 881-8.
- 4. Dalla Man C., et al. "The UVA/PADOVA type 1 diabetes simulator: New features", J Diabetes Sci. Technol. 8 (2014) 26-34.

ACKNOWLEDGEMENTS

This work was supported partially by the Agency for Management of University and Research Grants (AGAUR) of the Government of Catalonia, Spain (Beatriu de Pinós (BP-DGR) 2013)), and for the PEPPER (Patient Empowerment through Predictive PERsonalised decision support) project