# Validation of a Simulation Model Describing the Glucose-Insulin-Glucagon Pharmacodynamics in Patients with Type 1 Diabetes

Sabrina L. Wendt<sup>1,2</sup>, Ajenthen Ranjan<sup>3,4</sup>, Jan K. Møller<sup>2</sup>, Signe Schmidt<sup>3,4</sup>, Carsten B. Knudsen<sup>1</sup>, Jens J. Holst<sup>5</sup>, Sten Madsbad<sup>3,5</sup>, Henrik Madsen<sup>2</sup>, Kirsten Nørgaard<sup>3</sup>, John B. Jørgensen<sup>2</sup> <sup>1</sup>Zealand Pharma A/S, <sup>2</sup>Technical University of Denmark, <sup>3</sup>Hvidovre Hospital, <sup>4</sup>Danish Diabetes Academy, <sup>5</sup>University of Copenhagen

## Introduction

Currently, no consensus exists on a model describing endogenous glucose production (EGP) as a function of glucagon concentrations. Reliable simulations to determine the glucagon dose preventing or treating hypoglycemia or to tune a dual-hormone artificial pancreas control algorithm need a validated glucoregulatory model including the effect of glucagon.

This poster presents the results from the leave-one-out crossvalidation of a glucoregulatory model with interacting effects of insulin and glucagon [1]. We present model fits to data, and simulations with the model showing the glucagon doseresponse relationship at varying insulin levels [2].

### **Materials and Methods**

Eight type 1 diabetes patients received a subcutaneous (SC) bolus of insulin (NovoRapid®) on four study days to induce mild hypoglycemia followed by a SC bolus of saline (A) or 100 (B), 200 (C) or 300 (D)  $\mu$ g glucagon (GlucaGen®). Samples were analyzed for concentrations of glucagon, insulin, and glucose.

The PD model is mainly inspired by Hovorka et al. [3].

$$\frac{\mathrm{d}Q_{1}(t)}{\mathrm{d}t} = -F_{01} - F_{R} - S_{T}x_{1}(t)Q_{1}(t) + k_{12}Q_{2}(t) + G_{GG}(t) + G_{GNG}(t) + G_{GNG}(t) + G_{I}(t) - \frac{\mathrm{d}Q_{2}(t)}{\mathrm{d}t} = S_{T}x_{1}(t)Q_{1}(t) - (k_{12} + S_{D}x_{2}(t))Q_{2}(t) + \frac{\mathrm{d}x_{I}(t)}{\mathrm{d}t} = k_{i}(I(t) - x_{i}(t)) \qquad i = 1, 2, 3$$

 $\mathsf{Q}_1(t)$  and  $\mathsf{Q}_2(t)$  are the masses of glucose per BW (µmol/kg) in the accessible and non-accessible compartments. Glucose concentration (mmol/L) in the accessible compartment is  $\mathsf{Q}_1/\mathsf{V}$  with V fixed at 160 mL/kg. I(t) is the insulin concentration (mIU/L) in the accessible compartment.  $x_i(t)$  are remote effects of insulin (mIU/L).  $\mathsf{F}_{01}$  is the non-insulin-dependent glucose flux.  $\mathsf{F}_{\mathsf{R}}$  is the renal glucose clearance.  $k_{12}$  and  $k_i$  are transfer rate constants.  $\mathsf{S}_{\mathsf{D}},\mathsf{S}_{\mathsf{E}}$ , and  $\mathsf{S}_{\mathsf{T}}$  are insulin sensitivities. The model is modified so  $\mathsf{G}_{\mathsf{GG}}(t)$  is the insulin and glucagon dependent EGP corresponding to glycogenolysis and  $\mathsf{G}_{\mathsf{GNG}}$  is the constant EGP contribution from gluconeogenesis [1].

$$G_{GG}(t) = \frac{1 - S_E x_3(t)}{1 - S_E I_b} \left( (E_{max} - G_{GNG}) \frac{\mathcal{C}(t)}{\mathcal{C}_{E50} + \mathcal{C}(t)} \right)$$

C(t) is the glucagon concentration (pg/mL) in the accessible compartment. I<sub>b,y</sub> is the fixed basal insulin concentration (mIU/L) for subject y, and E<sub>0</sub> is the minimum EGP fixed at 8 µmol/(kg·min). E<sub>max</sub> is the maximum EGP at I<sub>b,y</sub>. C<sub>E50</sub> is the glucagon concentration at half maximum EGP.

The PD model validation was carried out as a 4-fold leave-oneout cross-validation leaving all data from one visit out per fold. To quantify the simulation accuracy of the model on datasets not used for parameter optimization, the bias was calculated by the mean prediction error (MPE) and the precision calculated by the mean absolute prediction error (MAPE). Testvisit fits were accepted if MPE <  $\pm 15\%$  and MAPE < 20%.

$$MPE = \frac{1}{N} \sum_{j=1}^{N} \left[ \left( \frac{pred_j - obs_j}{obs_j} \right) \cdot 100 \right]$$
$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left[ \left( \frac{|pred_j - obs_j|}{obs_j} \right) \times 100 \right]$$

All non-outlier visits were used to estimate the final model parameters for each patient using maximum a posteriori with the CTSM-R package in R (http://ctsm.info/).

The seven virtual patients each underwent an *in silico* euglycemic (5 mmol/L) clamp study where the insulin infusion rate (IIR) was constant at 1-5 times the basal IIR. Meanwhile, the responses to glucagon boluses ranging 1  $\mu$ g-10 mg were assessed by 60-minutes area under the curve (AUC<sub>60min</sub>).

### Results

| Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Table 1: Result of leave-one-out cross-validation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| Patient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Accepted Test-visit fits (Training-visits) |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (BD), B (AD)                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C (ABD), D (ABC)                           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (BCD), B (ACD)                           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B (ACD)                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (BC), B (AC), C (AB)                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (BD), D (AB)                             |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C (ABD), D (ABC)                           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None                                       |
| R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
| 300 200 500 500 40 Time.m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i a da a     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| American and the second |                                            |

Figure 1: Data and model fits of patient 7. Insulin PK (top), glucagon PK (middle), glucose PD (bottom) during visits A-D (left to right).

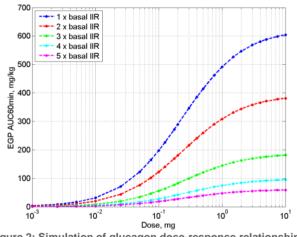



Figure 2: Simulation of glucagon dose-response relationship at varying insulin levels.

#### Conclusions

We successfully validated a model describing the glucose-insulin-glucagon dynamics by leave-one-out cross-validation in seven type 1 diabetes patients. We used patient specific parameter sets to establish a virtual population. Simulations with the virtual patients showed that the ambient insulin level affects the maximum EGP response to glucagon, but has little influence on the dose yielding half maximum response.

### References

[1] SL Wendt *et al.* "Cross-validation of a glucose-insulinglucagon pharmacodynamics model for simulation using data from patients with type 1 diabetes", J Diabetes Sci Technol, 2017.

[2] SL Wendt *et al.* "Simulating clinical studies of the glucoregulatory system: *in vivo* meets *in silico*", Technical University of Denmark (DTU), DTU Compute-Technical-Report-2017, no. 1.

[3] R Hovorka *et al.*, "Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT", AM J Physiol Endocrinol Metab, 2002.







Hvidovre Hospital



