

SET-UP AND PROCEDURE FOR INTRAPERITONEAL GLUCOSE MONITORING IN ANAESTHETISED ANIMALS

Patrick Christian Boesch^{1,2}, Marte Kierulf Åm^{1,4,5}, Øyvind Stavdahl^{1,2}, Anders Lyngvi Fougner^{1,2,5}, Sven Magnus Carlsen^{1,4,6}, Reinold Ellingsen^{1,3} and Dag Roar Hjelme^{1,3}

patrick.c.bosch@ntnu.no marte.k.am@ntnu.no oyvind.stavdahl@ntnu.no sven.carlsen@ntnu.no reinold.ellingsen@ntnu.no dag.hjelme@ntnu.no

- ¹Artificial Pancreas Trondheim The APT research group (<u>www.apt-norway.com</u>) ²Department of Engineering Cybernetics
- ³Department of Electronic Systems

⁴Department of Cancer Research and Molecular Medicine

Norwegian University of Science and Technology (NTNU), Trondheim, Norway

⁵Helse Midt-Norge – The Central Norway Regional Health Authority, Norway

⁶St Olavs University Hospital, Trondheim, Norway

MOTIVATION

Aim:

Intraperitoneal (IP) glucose sensing

- Promising location for an artificial pancreas (AP) [1]
- Understand dynamics and distribution of IP glucose

Particular challenges

- No off-the shelf system available
- Adapt a commercially available continuous glucose sensor for IP use
- Achieve sufficiently high sampling rate (≥1/min)

GLUCOSE SENSING

Approach 1

 Continuous, enzyme-based amperometric sensors (Abbott Freestyle Libre Flash (FLF))

Approach 2

Verify performance of prototypes

• Map IP glucose dynamics

- Automate sampling as far as possible
- Prove and monitor function of set-up

Manual, discrete sampling of IP fluid

 Analysis with blood gas analyzer (Radiometer ABL) 725)

METHOD

Approach 1 (for continuous IP glucose data)

- FLF acquires glucose value in peritoneum (1 new value per minute)
- LimiTTer[2] (DIY automated read-out system) with modified software reads data from FLF 3 times per minute via NFC
- LimiTTer transmits data via BLE to xDrip[3] (app to log and display glucose value)
- Inserter aligns FLF with LimiTTer

Set-up Approach 1:

- FLF 3.
- Guide Tube*
- Guide Wire*
- Inserter
- Tablet with xDrip

*Only needed for Approach 2 and allows for IP fluid sampling from approximately

Approach 2 (to verify and possibly calibrate FLF data)

- Sampling tube is manually inserted along the guide wire
- Syringe is used to cause a vacuum in the sampling tube
- Sampling tube is removed and sample analyzed with blood gas analyser (BGA)
- Guide tube ensures easy insertion though the abdominal wall

- Sampling Tube
- Guide Wire Tube
- Outer Tube
- Syringe Adapter
- Silicone

Data:

Information on the data acquired with this set-up in pig experiments can be found on the separate Poster No. 46

BLE = Bluetooth Low Energy NFC = Near-Field Communication

the same site as the FLF measurements

RESULTS

Summary of FLF for IP glucose sensing

Fig. B: 6 Libre sensors PBS with glucose during a performance test with a ramp profile after a pig experiment, glucose reference on BGA. Vertical dashed lines mark start and end of ramps.

Fig. C: Two IP sensors compared to IA and IP fluid samples on BGA taken at corresponding site from one of the pig experiments

- When the FLF is exposed to a step, an overshoot followed by a declining output results (Fig. A). This is *believed* to be a response of an internal FLF calibration algorithm
- A sensor dependent offset can be detected when testing the FLF *in vitro* in Phosphate Buffered Solution (PBS) with glucose (Figs. A and B)
- There is a visible delay between the change of glucose and the detection by the Libre sensor (Fig. B)
- One can observe variations in offset and gain under identical, controlled conditions (Fig. B)
- The FLF adapted for IP use performs well during experiments with anaesthetised pigs, when comparing the uncalibrated data to the IA and IP samples analysed on the BGA (Fig. C)

DISCUSSION

- The use of the IP FLF (Approach1) offers a simple and inexpensive tool to continuously measure IP glucose
- The manual sampling of IP fluid (Approach 2) allows to compare the FLF data to a gold standard, BGA
- If glucose levels change too rapidly, apparent correction algorithms of the FLF make data temporarily unusable (changes of up to 0,675mmol/min tested and approved, further testing to find maximum needed)
- It is necessary to calibrate the data for offset and gain, due to intra-sensor and environmental variations

REFERENCES

[1] Nelson, J. A. et al. *Intraperitoneal insulin* administration produces a positive portal-systemic blood insulin gradient in unanesthetized, unrestrained swine, Metabolism, 31(10), pp. 969-72, 1982. [2] LimiTTer by JoernL @ GitHub

[3] xDrip by stephenblackwasalreadytaken @ GitHub