#### IMPACT OF SENSOR-AUGMENTED INSULIN PUMP THERAPY ON GLYCAEMIC CONTROL

IN CHILDREN AND ADULTS WITH TYPE 1 DIABETES:

A CLINICAL PRACTICE EXPERIENCE IN SPAIN

Beato-Víbora PI<sup>1</sup>, Gil-Poch E<sup>2</sup>, Galán-Bueno L<sup>2</sup>, Morales-Pérez F<sup>1</sup>, Arroyo-Díez FJ<sup>2</sup> <sup>1</sup>Department of Endocrinology. Badajoz University Hospital. Badajoz. Spain <sup>2</sup>Department of Paediatrics. Badajoz University Hospital. Badajoz. Spain

# **Background and Aims**

To evaluate the effect of sensor-augmented pump therapy (SAP) on HbA1c in routine clinical practice in adult and paediatric patients with type 1 diabetes (T1DM)

### Methods

We performed a retrospective evaluation of the effect of SAP on glycaemic control in all T1DM patients treated in the adult and paediatric Diabetes Units at a referral hospital in Badajoz (south-western Spain)

#### Results

| Table 1. Demographic characteristics                               |                |
|--------------------------------------------------------------------|----------------|
|                                                                    |                |
| Age (years)                                                        | 35 ± 14 (2-61) |
| Children and adolescents (< 18 years-old) (n)                      | 14             |
| Gender (female %)                                                  | 62             |
| Duration of diabetes (years)                                       | 21 ± 12        |
| Time on SAP (months) (median [IQR])                                | 16 [7-27]      |
| Treatment before SAP (n)                                           |                |
| MDI + SMBG                                                         | 39             |
| Pump + SMBG                                                        | 35             |
| MDI + CGM                                                          | 8              |
| diabetes onset                                                     | 3*             |
| SAP (n)                                                            |                |
| Minimed-640G + Enlite® (with PLS)                                  | 53             |
| Minimed-Paradimg-VEO <sup>™</sup> + Enlite <sup>®</sup> (with LGS) | 29             |
| Animas vibe®+DexcomG4®                                             | 3              |

(N = 85).\*3 children had started SAP at diabetes onset (< 20 months-old); LGS (low glucose suspend function), PLS (predictive low-glucose suspend feature) Percentage of patients with HbA1c  $\leq$  7% increased from 35% to 54% at the end of follow-up (p = 0.001). HbA1c at the end of follow-up was significantly lower than HbA1c before the start of SAP (7.5 ± 0.9% vs 7.0 ± 0.7%, p = 0.001) (Figure 1)





Figure 1. Changes in percentage of patients with HbA1c  $\leq$  7% (Left) and changes in HbA1c from baseline to end of follow-up (Right) (both p = 0.001)

In the group of patients with baseline HbA1c > 7% (n = 52), HbA1c was reduced from 8.0  $\pm$  0.1% to 7.3  $\pm$  0.1% (p = 0.001), 81% of the patients improved their HbA1c and end-of-follow-up Hba1c was significantly lower when different groups of age, time on SAP and previous and current treatment were analysed (Table 2)

| HbA1c > 7%                                                         |                       |                                      |    |       |
|--------------------------------------------------------------------|-----------------------|--------------------------------------|----|-------|
|                                                                    | Baseline<br>HbA1c (%) | End-of-<br>follow-up<br>HbA1c<br>(%) | n  | р     |
| Age                                                                |                       |                                      |    |       |
| ≤ 18 years-old                                                     | 7.9 ± 0.8             | 7.5 ± 0.6                            | 9  | 0.189 |
| > 18 years-old                                                     | 8.0 ± 0.6             | 7.2 ± 0.1                            | 43 | 0.001 |
| Time on SAP                                                        |                       |                                      |    |       |
| < 12 months                                                        | 7.6 ± 0.4             | 7.2 ± 0.6                            | 18 | 0.004 |
| ≥ 12 months                                                        | 8.2 ± 0.7             | $7.4 \pm 0.6$                        | 34 | 0.001 |
| Treatment before SAP                                               |                       |                                      |    |       |
| MDI + SMBG                                                         | 8.2 ± 0.6             | 7.2 ± 0.6                            | 29 | 0.001 |
| Pump + SMBG                                                        | 7.7 ± 0.4             | 7.3 ± 0.6                            | 18 | 0.030 |
| MDI + CGM                                                          | 8.2 ± 0.7             | 7.0 ± 0.6                            | 3  | 0.022 |
| SAP                                                                |                       |                                      |    |       |
| MiniMed 640G <sup>®</sup> + Enlite (with LGS)                      | 8.1 ± 0.7             | $7.4 \pm 0.6$                        | 32 | 0.001 |
| MiniMed Paradigm <sup>®</sup> VEO <sup>™</sup> + Enlite (with PLS) | 7.9 ± 0.4             | 7.2 ± 0.6                            | 18 | 0.001 |
| Animas vibe®+ DexcomG4®                                            | 7.5 ± 0.4             | 6.7 ± 0.3                            | 2  | 0.042 |
|                                                                    |                       |                                      |    |       |

(N = 52). Data are expressed as mean  $\pm$  standard deviation. SAP: sensor-augmented pump therapy, MDI: multiple daily injections, SMBG: self-monitoring of blood glucose, CGM: continuous glucose monitoring. LGS: low-glucose suspend function, PLS: predictive low-glucose suspend feature

## Conclusion

Sensor-augmented pump therapy provides a sustained improvement in glycaemic control in real-life clinical practice in children and adults with T1DM