

Metabolic Research Laboratories

Closed-Loop Insulin Delivery in Adults with Well-Controlled Type 1 Diabetes: A Free-Living Day-and-Night Randomised Crossover Study

L. Bally^{1, 2, 3*}, H. Thabit^{1, 2*}, H. Kojzar⁴, J.K. Mader⁴, J. Qerimi-Hyseni⁴, S. Hartnell², M Tauschmann^{1, 5}, J.M. Allen^{1, 5}, M.E. Wilinska^{1, 5}, T. R. Pieber⁴, M. L. Evans^{1, 2}, R. Hovorka^{1, 5}

¹Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ²Department of Diabetes & Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ³Department of Diabetes, Endocrinology, Clinical Nutrition & Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland ⁴Department of Internal Medicine, Division of Endocrinology & Diabetology, Medical University of Graz, Graz, Austria ⁵Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom

Introduction

Tight glycaemic control remains a predisposing factor to hypoglycaemia which is associated with increased morbidity and mortality in type 1 diabetes^{1,2}. Closed-loop insulin delivery has the potential to further improve glycaemic control whilst reducing the hypoglycaemia burden³.

Results

- Closed-loop increased % of time when glucose was in target range ulletby 11 percentage points, compared to control period (p<0.001), see Table 2.
- Closed-loop reduced the proportion of times spent hypoglycaemic and burden of hypoglycaemia (p<0.001).

In a four-week open-label prospective two-centre randomised crossover study, we evaluated the efficacy, safety and utility of unsupervised day-and-night closed-loop insulin delivery in type 1 adults with HbA1c below 7.5%, compared to usual insulin therapy under free-living conditions.

Methods

- Adults with type 1 diabetes were recruited from Addenbrooke's Hospital Cambridge (UK) and University of Graz (Austria).
- Training on study insulin pump and continuous glucose monitoring (CGM) was followed by 2-4 weeks of run-in for familiarisation with study devices and compliance assessment.
- Participants were randomised to day-and-night hybrid closed-loop system or usual pump therapy, followed by 2-4 weeks washout period and then the other intervention for 4 weeks.
- During the control period, the display of the study CGM was blinded. Participants were allowed to use their own glucose monitoring devices (continuous or flash glucose monitoring) if it was part of their pre-study usual care.
- Closed-loop utilised a model-predictive-control algorithm to direct insulin delivery.
- Primary outcome: % of time when sensor glucose was in target

- Lower mean glucose during closed-loop was achieved without changing the total daily insulin delivery (p=0.36).
- All measures of glycaemic variability were significantly lower in the closed-loop period than in the control period (p<0.001).
- Participant use of closed-loop was high (90% of time, 95% CI 78 to 89). The majority (76%) agreed that less time was spent on diabetes self-management during closed-loop.
- No episodes of serious adverse events occurred.

	Closed-loop (n=29)	Control (n=28)	Paired difference or paired ratio (95% CI)	p value
Time spent at glucose level (%)				
3.9 to 10 mmol/l	76.2 (6.4)	65.6 (8.1)	10.5 (7.6 to 13.4)	<0.001
>10 mmol/l	20.4 (6.3)	27.4 (9.6)	-6.9 (-10.2 to -3.5)	<0.001
< 3.9 mmol/l	2.9 (2.3 to 4.0)	5.3 (3.5 to 10.0)	0.50 (0.41 to 0.63)	<0.001
<3.5 mmol/l	1.3 (0.8 to 2.3)	3.4 (1.9 to 7.2)	0.35 (0.26 to 0.47)	<0.001
<2.8 mmol/l	0.3 (0.1 to 0.5)	1.0 (0.5 to 2.6)	0.24 (0.14 to 0.41)	<0.001
AUC< 3.5 mmol/l (mmol/l x min)	9.1 (3.7 to 18.2)	26.7 (13.1 to 65.5)	0.27 (0.18 to 0.41)	<0.001
Mean glucose (mmol/l)	7.9 (0.5)	8.3 (0.9)	-0.4 (-0.7 to -0.1)	0.023
SD of glucose (mmol/l)	2.8 (0.4)	3.3 (0.5)	-0.5 (-0.7 to -0.3)	<0.001
CV of glucose (%)	35.3 (3.0)	40.3 (5.1)	-5.0 (-7.1 to -3.0)	<0.001
CV of glucose between days (%)	12.8 (3.3)	20.2 (4.6)	-7.5 (-9.7 to -5.3)	<0.001

Table 2. Overall day-and-night glucose control during closed-loop and control periods based on sensor glucose measurements. Data are mean (SD) or median (IQR)

12 ₁

range (3.9-10.0mmol/l). Analyses were by intention to treat.

Results

	<u>N=29</u>
Gender (F/M)	15/14
Age (years)	41 ± 13
Weight (kg)	72.9 ± 13.0
BMI (kg/m²)	25.1 ± 3.0
HbA1c (%)	6.9 ± 0.5
HbA1c (mmol/mol)	51.7 ± 4.8
Duration of diabetes (years)	24 ± 12
Duration on pump (years)	6 ± 4
Total daily insulin (U/kg/day)	0.5 ± 0.1
Baseline glucose sensor use, N [%]	
No prior glucose sensor use	18 [62%]
Real-time continuous glucose monitoring	5 [17%]
Flash alucose monitoring	6 [21%]

Figure 1. Median and IQR of sensor glucose (top) and insulin delivery (bottom).

Conclusions

Use of day-and-night hybrid closed-loop insulin delivery under unsupervised, free-living conditions for 4 weeks in adults with type 1 diabetes and HbA1c below 7.5% is safe, well tolerated, improves glucose control, and reduces hypoglycaemia burden. Larger and longer studies are warranted.

Figure 2. Individual values of mean sensor glucose and % of time spent with glucose concentration below 3.5mmol/l.

Table 1. Baseline characteristics. Data are presented as mean ± SD, unless specified otherwise.

- Baseline characteristics of randomised participants are shown in Table 1.
- Of the 29 randomised participants, 17% used real-time CGM and \bullet 21% used flash glucose monitoring as part of their usual care.

References:

- Khunti K et al, Diabetes Care 2015; 38(2): 316-22
- UK Hypoglycaemia Study Group, Diabetologia 2007; 50(6): 1140-7
- Thabit H et al. Diabetologia 2016; 59(9): 1795-805 3

Acknowledgements: JDRF, National Institute for Health Research Cambridge Biomedical Research Centre, Swiss National Science Foundation P1BEP3_165297

WWW.IMS.CAM.AC.UK

Working together to translate research into better health