Application of Zone Model Predictive Control (Zone-MPC) Artificial Pancreas (AP) During Extended Use of Infusion-Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial

Gregory P. Forlenza*, MD¹; Sunil Deshpande*, PhD²; Trang Ly, MBBS, FRACP, PhD³; Daniel P. Howsmon, BS⁴; Faye Cameron, PhD⁴; Nihat Baysal, PhD⁴; Lindsey Schulhof Towers, BS¹; Tatiana Marcal, CCRC³; B. Wayne Bequette, PhD⁴; Ravi Gondhalekar, PhD²; Francis J. Doyle III, PhD²; David M. Maahs, MD, PhD^{1,3}; Bruce Buckingham, MD³; Eyal Dassau, PhD²

min

¹Barbara Davis Center, University of Colorado Denver, Denver, CO, USA ²Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA ³Pediatric Endocrinology, Stanford University, Palo Alto, CA, USA ⁴Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA *Contributed equally.

Related poster in ATTD 2017 ATTD7-0252: Real-time detection of infusion-set faults

Background

- As unsupervised home use of artificial pancreas (AP) becomes standard-of-care, real-life test of extended use of insulin infusion-set and CGM sensor is essential.
- Safety and efficacy of closed-loop AP during the extended use have not been previously evaluated in outpatient conditions.

Design

Two-week randomized, crossover home-use study.

Zone-Model Predictive Control

- Zone-MPC¹ uses explicit model predictions and online optimization to keep glucose values in the target zone.
- At each step k, a state estimate is generated, optimal inputs $\{u_0, \ldots, u_{N_{\mu}-1}\}$ are calculated and only the first input u_0 is applied.
- Elucidation of zone-MPC optimization used in the study:

Time Target zone (green) and glucose predictions as dots (black in the zone, blue above the zone (\hat{z}) and red below the zone (\check{z}) .)

*See poster ATTD7-0252.

- Subjects continuously used devices to precipitate failures:
 - Extended the use of insulin infusion-set up to 7 days and extended the use of CGM sensor up to 21 days.
- Clinical protocol: Subjects followed their regular daily routines (including meal selection and pre-meal bolusing) and were monitored remotely during both arms.

Subject demographics

Cohort	19 (11F,8M)
Age [median (IQR), yrs]	23.0 (10.0)
Weight [mean (SD), kg]	86.1 (22.8)
Duration of diabetes [median (IQR), yrs]	11.0(11.8)
Total daily insulin [mean (SD), U]	56.3 (18.4)
HbA1c [mean (SD), %]	7.99 (1.68)

Glycemic metrics

 $\sum_{i=1}^{N_y} (\check{z}_i^2 + Q(v_i)\hat{z}_i^2 + \hat{D}\hat{v}_i^2)$ $\{u_0, ..., u_{N_u-1}\}$

Penalize glycemic deviations z_i from zone with assertive hyper correction and hypo prevention using glucose velocity v_i . Independently penalize insulin u_i to address hyper and hypo excursions.

subject to the following constraints:

 $\left. egin{split} x_0 = \mathbf{x}_{\mathbf{k}}, x_{i+1} = A x_i + B u_i, \ y_i = C x_i, \end{split}
ight.$ Insulin-glucose dynamics $0 \leq u_i + u_{\text{basal},k+i} \leq \overline{u}(t_i)$, Upper and lower bound on insulin (for safety) $u_i \leq u_{\text{IOB},k}$ Insulin-on-Board bound on insulin (for safety)

- List of variables associated with the optimization:
 - k: current sample time, i: prediction step.
 - N_v : prediction horizon, N_u : control horizon.
 - y: glucose deviation from fasting, u: insulin deviation from basal, x: state.
 - \hat{z} : glucose excursion above zone; \check{z} : glucose excursion below zone.
 - v: glucose velocity^{2,3} \approx rate of change of glucose, \hat{v} : non-negative velocity.
 - \hat{u}, \check{u} : positive and negative input deviation (around basal).
 - $Q(v_i), \hat{D}, \hat{R}, \hat{R}$: weights used in the optimization.
 - The upper bound $\bar{u}(t_i)$ is 1U during the day and 1.8 times subject's basal during the night^{1,2}. The upper bound $u_{IOB,k}$ is calculated using IOB decay curves and subject's correction factor 1,2 .

Individual glucose mean for AP and SAP arms

- Glycemic control for AP and SAP arms evaluated on following endpoints:
 - Time in euglycemia, hypoglycemia and hyperglycemia
 - Average glucose and glucose variability
 - Fasting glucose (using CGM at 06:00)

Table 1. Glycemic metrics for full day and overnight (00:00-06:00) period.

	Day and night			Overnight		
Metric	SAP (N=19)	AP (N=19)	p-val	SAP (N=19)	AP (N=19)	p-val
$\% {\sf Time} < 50 \; {\sf mg/dL}$	0.2 (0.4)	0.1 (0.2)	0.007	0.0 (0.3)	0.0 (0.0)	0.067
$\% {\sf Time} < 70 \; {\sf mg/dL}$	2.7 (2.3)	1.3 (1.2)	0.001	1.5(1.7)	0.7 (1.3)	0.004
%Time in [70,140] $\rm mg/dL$	39.2 (13.3)	48.1 (10.5)	0.016	36.3 (16.2)	50.7 (19.0)	0.024
%Time in [70,180] $\rm mg/dL$	65.2 (10.4)	71.6 (9.8)	0.008	66.1 (16.5)	73.7 (13.4)	0.020
$\mathrm{\% Time} > 180$ mg/dL	30.9 (15.5)	24.9 (8.8)	0.030	32.7 (17.9)	25.4 (11.4)	0.030
$\% {\sf Time} > 300 \; {\sf mg/dL}$	1.8 (2.1)	0.4 (2.1)	0.025	1.0 (2.4)	0.0(1.1)	0.277
Mean glucose†	159.0 (20.1)	148.3 (12.7)	0.059	159.4 (21.8)	150.9 (15.1)	0.126
Median glucose‡	153.2 (22.7)	140.5 (14.9)	0.036	154.6 (30.0)	138.3 (24.7)	0.064
SD glucose	55.1 (8.9)	51.9 (10.6)	0.044	53.2 (12.3)	46.4 (11.2)	0.053
Mean glu. @ 06:00	158.3 (18.6)	139.6 (19.7)	0.020			

Data are median (IQR). Significance assessed on paired-data by Wilcoxon signed rank test⁴. †, ‡ Represents each subject's mean (median) glucose using the complete CGM signal over the study period. SD is standard deviation.

Day-by-day glucose mean for AP and SAP arms

- The day-by-day mean (taken across subjects) glucose was lower during AP use on most days (11 of 13, see Fig. 2).
- The AP arm concurrently had reduced exposure to hypoglycemia

• 14 out of 19 subjects experienced reduction in mean sensor glucose on AP arm (see Fig.1) while 18 out of 19 subjects also spent less time below 70 mg/dL.

Discussion and Conclusions

- Under lengths of wear to induce sensor and infusion-set failure, zone-MPC based AP arm significantly outperformed SAP arm (See Table 1) with improvements in:
 - Time below 70 mg/dL: approx. 2-times reduction (p = 0.001)

over SAP arm.

Fig 2. Day-by-day mean blood glucose in AP and SAP arms.

- Time in 70 to 180 mg/dL: 6.4% absolute increase (p = 0.008)
- Time above 300 mg/dL: approx. 4.5-times reduction (p = 0.025)
- AP arm had lower median glucose (p = 0.036) with significant reduction in fasting glucose ($\approx 19 \text{ mg/dL}, p = 0.02$).
- AP arm also outperformed SAP during overnight period (See Table 1) with more time in range and lower median glucose.
- A majority of subjects (14 out of 19) saw improvement in mean glucose, as well as in day-by-day mean glucose, in AP arm over SAP arm.
- A majority of subjects (18 out of 19) had reduced exposure to hypoglycemia in AP arm over SAP arm.

1) R. Gondhalekar, E. Dassau and F. J. Doyle III. Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica, 71:237-246, 2016. 2) R. Gondhalekar, E. Dassau and F. J. Doyle III. Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM. In Proc. of 2015 American Control Conference, 1635-1640, 2015. 3) R. Gondhalekar, E. Dassau and F. J. Doyle III. Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance. Under review.

4) G. Forlenza, S. Deshpande et al. Application of zone model predictive control (Zone-MPC) artificial pancreas during extended use of infusion-set and sensor: A randomized crossover-controlled home-use trial. In preparation.

ISCHUTZ MEDICAL CAMP

