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 Data overview: CGM glucose data was 
available for eight hours after a meal, from 
12:00 PM until 20:00 PM, with a sampling 
period of 15 minutes. Data covering 7 
post-prandial periods for a same 60g CHO 
meal was used, both in open-loop (OL) 
and closed-loop (CL) scenarios.

 Method: SARIMA and SARIMAX models 
were identified following the Box-Jenkins 
methodology and evaluated with a Leave-
one-out Cross-validation procedure 
(LOOCV).

 Goodness-of-fit: Residual analysis 
(Ljung-Box Q-Test ), Akaike information 
criterion (AIC) and  mean squared error 
(MSE) were compared.

 Forecast accuracy: Evaluated via mean 
absolute error (MAE), root mean squared 
error (RMSE), mean absolute percentage 
error (MAPE) and Theil inequality 
coefficient (UI).

 Computational algorithms: Eviews 
software, version 9.5, was used.

 Seasonality improved model accuracy 
allowing the extension of the PH, although 
longer time-series might be needed.

 SARIMAX models exhibit relatively higher 
forecasting accuracy for larger prediction 
horizons.
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 A clinically important task in type 1 
diabetes management is the prevention of 
hypo- and hyperglycemia.

 Thus, an important feature of any artificial 
pancreas (AP) is its ability to predict 
glucose along a given prediction horizon 
(PH), either as part of the control 
algorithm or the patient supervision 
subsystem. 

 In this study we explored the concept of  
seasonality in time-series models for 
glucose prediction to improve prediction 
accuracy and allow longer PHs. This is 
expected to improve AP performance and 
safety.

OL case:

 CL case:

Background & objective 

300 min240 min180 min120 min60 min30 minModel \ PH 

7.87%9.34%8.26%5.49%4.63%1.39%SARIMA (2,0,1) (1,0,1)

6.36%7.07%6.53%6.91%8.42%4.20%SARIMAX.CSII 

(2,0,1,1) (1,0,1)

5.86%7.01%6.47%5.74%8.10%4.75%SARIMAX.Meal

(2,0,1)(1,0,1)

6.33%7.02%6.58%7.20%8.34%3.76%SARIMAX.CSII,Meal

(2,0,1,1)(1,0,1)

12.25%16.76%15.22%11.12%13.86%4.31% ARIMA(2,0,1)

11.80%12.87%14.11%15.39%13.13%6.78%ARIMAX.CSII (2,0,1,1)

10.97%11.13%11.63%12.78%11.44%6.05%ARIMAX.Meal (2,0,1)

11.89%13.10%14.43%15.59%12.84%5.88%
ARIMAX.CSII.Meal

(2,0,1,1)

2) Comparison of observed and predicted glucose for 5 hours in the

best OL and CL cases of study, by using SARIMA models.

3) Comparative study between SARIMA and SARIMAX in the best CL 

case study & different linear empirical dynamic models, by using 

MAPE as a statistical measure for comparison.

Forecasting accuracy 

measures
OL_Case study CL_case study

MAE 27,5997 21,1895

RMSE 33,3558 25,2725

MAPE 27,91% 14,82%

UI 0,1108 0,0867

1) The average of the forecast accuracy measure for a 5-h prediction 

horizon in both cases (OL & CL) of study, by using LOOCV technique.
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