

Stochastic Seasonal Models for Glucose Prediction in Type 1 Diabetes

Eslam Montaser, José-Luis Diez, & Jorge Bondia

Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain.

Background & objective

- → A clinically important task in type 1 diabetes management is the prevention of hypo- and hyperglycemia.
- → Thus, an important feature of any artificial pancreas (AP) is its ability to predict glucose along a given prediction horizon (PH), either as part of the control algorithm or the patient supervision subsystem.
- → In this study we explored the concept of seasonality in time-series models for glucose prediction to improve prediction accuracy and allow longer PHs. This is expected to improve AP performance and safety.

Materials and Methods

- Data overview: CGM glucose data was available for eight hours after a meal, from 12:00 PM until 20:00 PM, with a sampling period of 15 minutes. Data covering 7 post-prandial periods for a same 60g CHO meal was used, both in open-loop (OL) and closed-loop (CL) scenarios.
- Method: SARIMA and SARIMAX models were identified following the Box-Jenkins methodology and evaluated with a Leaveone-out Cross-validation procedure (LOOCV).
- Goodness-of-fit: Residual analysis (Ljung-Box Q-Test), Akaike information criterion (AIC) and mean squared error (MSE) were compared.
- Forecast accuracy: Evaluated via mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and Theil inequality coefficient (UI).
- Computational algorithms: Eviews software, version 9.5, was used.

Conclusions

- Seasonality improved model accuracy allowing the extension of the PH, although longer time-series might be needed.
- SARIMAX models exhibit relatively higher forecasting accuracy for larger prediction horizons.

References

- Finan, D.A., Doyle, F.J., Palerm, C.C., Bevier, W.C., Zisser, H.C., Jovanovic, L., and Seborg, D.E. (2009). Experimental evaluation of a recursive model identification technique for type 1 diabetes.
- M. Eren-Oruklu, A. Cinar, L. Quinn, and D. Smith, "Estimation of future glucose concentrations with subject-specific recursive linear models,", 2009.
- 3) Box, G.E., Jenkins, G.M., Reinsel, G.C., and Ljung, G.M. (2015). Time series analysis: forecasting and control.

Acknowledgements: Work supported by the Spanish Ministry of Economy and Competitiveness, grant DPI2013-46982-C2-1-R, and the EU, FEDER funds.

Results

1) The average of the forecast accuracy measure for a 5-h prediction horizon in both cases (OL & CL) of study, by using LOOCV technique.

Forecasting accuracy measures	OL_Case study	CL_case study	
MAE	27,5997	21,1895	
RMSE	33,3558	25,2725	
МАРЕ	27,91%	14,82%	
UI	0,1108	0,0867	

2) Comparison of observed and predicted glucose for 5 hours in the best OL and CL cases of study, by using SARIMA models.

3) Comparative study between SARIMA and SARIMAX in the best CL case study & different linear empirical dynamic models, by using MAPE as a statistical measure for comparison.

Index

100

Model \ PH	30 min	60 min	120 min	180 min	240 min	300 min
SARIMA (2,0,1) (1,0,1)	1.39%	4.63%	5.49%	8.26%	9.34%	7.87%
SARIMAX.CSII (2,0,1,1) (1,0,1)	4.20%	8.42%	6.91%	6.53%	7.07%	6.36%
SARIMAX.Meal (2,0,1)(1,0,1)	4.75%	8.10%	5.74%	6.47%	7.01%	5.86%
SARIMAX.CSII,Meal (2,0,1,1)(1,0,1)	3.76%	8.34%	7.20%	6.58%	7.02%	6.33%
ARIMA(2,0,1)	4.31%	13.86%	11.12%	15.22%	16.76%	12.25%
ARIMAX.CSII (2,0,1,1)	6.78%	13.13%	15.39%	14.11%	12.87%	11.80%
ARIMAX.Meal (2,0,1)	6.05%	11.44%	12.78%	11.63%	11.13%	10.97%
ARIMAX.CSII.Meal (2,0,1,1)	5.88%	12.84%	15.59%	14.43%	13.10%	11.89%