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During physical activity, whole body oxygen consumption may
increase as much as 20-fold. For people with Type 1 Diabetes,
information on the aerobic energy expenditure during the exercise
may help patients to make adjustments for infused insulin rate or
decide the amount of carbohydrate intake avoiding the low blood
glucose level. Direct determination of oxygen consumption is not
always feasible. A model for estimating oxygen consumption is
proposed for two common types of aerobic exercise (treadmill and
stationary bicycle) over a wide range of exercise intensities and
durations based on exercise conditions such as speed, grade and
resistance.

The model provides a good estimate of energy expenditure based
on time and intensity of aerobic exercise for people with T1D.
Submodel 1 is able to track heart rate experimental data despite
frequent changes of the speed and resistance in exercise protocol.
Investigation of different exercise protocols enables building a
more general heart rate estimation model.

While oxygen consumption is frequently described by a linear
function of heart rate during exercise, the functionality is not linear
around minimum and maximum heart rate. Submodel 2
appropriately captures the functionality of oxygen consumption (i.e.
aerobic EE) over wide ranges of heart rate.

In addition to Maximal Oxygen Consumption test, each subject
performed two treadmill and two bike workouts. The exercise
specification in terms of change of speed and resistance for the two
bike sessions are almost the same (Fig. 3 shows one session), and
the speed patterns are different for the treadmill sessions (Fig. 4).

The model estimating the energy expenditure for these two types of
aerobic exercise consists of two submodels: a cardiovascular
submodel and an energy expenditure submodel. The former
describes heart rate values based on time, type and intensity of
exercise. The latter calculates aerobic energy expenditure during
these exercises and recovery time based on heart rate (Figure 5).

Figure 1. Exercise profile for Maximal Oxygen Consumption test.

Figure 2. Zephyr Bioharness
chestband measures heart rate.  
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Figure 6. Treadmill (a) stress test, (b) Oscillatory pattern is  
Interval training (MSE=119) and testing data set (MSE=106).

Submodel 2 estimates energy expenditure (EE) in MET units
based on heart rate while the constraint EE(HR rest)=1 is
enforced. MATLAB non-linear least squares fitting calculates
parameters (p1, p2, p3). Figure 8 shows the estimated EE
(output of submodel 2) vs. estimated heart rate (output of
submodel 1) and compares it with the measured EE vs.
measured heart rate during Maximal Oxygen Consumption test.
Figure 9 shows the output of consecutive submodels by
comparing estimated energy expenditure for 12 minutes of
stress test.

Submodel 1 is an extension of a nonlinear model [1] where the
treadmill speed is the only input. However, changes in the grade
of the treadmill affects heart rate and energy expenditure
remarkably. Thus, we added u2 the grade of treadmill as the
second input to submodel 1. Parameters as and ar as the
coefficients of inputs are new parameters added to the model. a1
to a5 are the parameters of the original model. Among the seven
parameters of submodel 1, a2, a5, as and ar are the four person-
specific parameters while a1, a3 and a4 are the same for all
subjects.

Training data sets are stress test and one of the treadmill
sessions. The second treadmill session is testing data. The
parameters are computed by minimizing the Mean Square Error
(MSE) over training data sets by MATLAB (fminsearch)
optimization. Submodel 1 is also able to estimate heart rate for
stationary bike when the inputs are cycling speed and resistance.
For cycling, the values of parameters are different from treadmill
and are found by optimization over one of bike data set. The
estimated heart rates by using submodel 1 are shown in Figure 5
and 6 for treadmill and bike respectively.
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Figure 9. Estimated EE for 12 
minutes of stress test. 

Figure 8. Estimated EE vs. 
estimated heart rate.

Figure 3. 
Bike exercise protocol.

Figure 4.
Treadmill exercise protocols. 

Figure 7. Cycling (a) training (MSE=88) (b) testing (MSE=138).

Figure 5. Cardiovascular and energy expenditure submodels.

Eleven young adults with type 1 diabetes participated in exercise
studies at the University of Illinois at Chicago (UIC). The time and
the duration of their participation and exercise were flexible and
varied between 3-6 days from morning to evening. Each subject
performed 4 to 6 exercise sessions of moderate to high intensity
exercise with 30-40 minutes duration. On the first day, the Maximal
Oxygen Consumption test (VO2 max) was performed to assess
aerobic (cardiovascular) fitness using a Bruce protocol. In this
protocol, the treadmill speed and grade are increased together to
specified endpoints (e.g., exhaustion). Figure1 demonstrates the
change of speed (mph) and grade (tangent of slope × 100) during
the exercise test.

Oxygen consumption (L.min-1) during the maximal exercise
stress test is continuously determined using data from an air
volume meter and measuring O2 and CO2 fractions in inhaled
and exhaled gases. Estimated of the energy expenditure (EE)
also can be stated by metabolic equivalent (MET) units where 1
MET is assumed to be assumed to be 3.5 ml/min/kg resting
oxygen consumption. EE in MET unit is also computed from test
data. Heart rate can be reliably monitored and recorded by non-
invasive sensors (Fig. 2). We used recorded EE, heart rate and
exercise specification to build a model which estimates aerobic
EE (i.e. metabolic equivalent).
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