

A Bioartificial Pancreas for the Treatment of Type 1 Diabetes

U. Barkai¹, Y. Avni¹, B. Zimerman¹, S. Maimon¹, T. Goldman¹, P.de Vos,² and A. Rotem¹

¹Beta-O₂ Technologies, Rosh-Ha'ain, Israel; ²Department of Pathology and Laboratory Medicine, Section of Immunoendocrinology, University Medical Center Groningen, Groningen, The Netherlands.

Introduction

Islet transplantation is only a partial solution for patients with type 1 diabetes (T1D) due to:

- The need for harmful immunosuppressive therapy
- Loss of islets due to limiting amounts of O₂, as the blood supply is disrupted during their isolation

The β Air device

We have developed a bioartificial pancreas, the β Air device, which supplies continuous O₂ and shields the islets from the host immune system, thereby eliminating the need for immunosuppressive drug therapy.^{1,2} The device includes (Figures 1,2):

- Biopore porous membranes
- Islets immobilized in hydrogel
- O₂ chamber (which is replenished through the access ports; in the current device, O₂ replenishing is performed every 24 hours)

Results

The β Air device demonstrated an ability to maintain functionality of the islets with active supply of O₂ in different animal models, and the ability of its membrane to shield donor islets from the host immune system, without immunosuppressive drug therapy.

βAir devices were implanted in rats with streptozotocin (STZ)-Induced diabetes either with or without replenishing the O₂ supply. Blood glucose levels were measured daily. Without O₂, the βAir device did not affect blood glucose levels (Figure 4, left), whereas with daily O₂ replenishment, near normoglycemia was achieved and sustained until O₂ replenishment was stopped after 59 days (Figure 4, right).

Figure 4. β Air function is dependent on O₂ supply. Left: STZ-induced diabetic rats (n = 4) were implanted with β Air devices containing rat islets for 9 days with no O₂ replenishment. Right: β Air devices were implanted in STZ-induced diabetic rats (n = 6), O₂ was replenished daily for 58 days, and on day 59, O₂ supply was replaced with N₂. The lines represent 99% upper and lower confidence.

 βAir devices containing rat islets were implanted in isogenic, allogeneic, and xenogeneic animals with STZ-Induced diabetes. Upon implantation, near normoglycemia was achieved. Upon retrieval, blood glucose levels returned to the diseased state (Figure 5).

Figure 1. Rat β Air device. Top: Schematic illustration. Bottom left: Device implanted subcutaneously in a rat. Bottom right: Top view of a device.

Subcutaneous access ports

Dimensions: Diameter 68 mm, thickness: 17 mm

Figure 2. Pig β Air device showing the macro-chamber containing the islets and the access subcutaneous ports used for O₂ replenishing.

Supplying O_2 to the dense islet culture is key to its continued function and longevity. The O_2 supplied through the access ports crosses the gas permeable membrane, dissolves and diffuses in the gel, then consumed by the islets. The gradient in O_2 partial pressure across the islet culture depends on the density of the culture. Increased density leads to rapid drop in O_2 partial pressure across the culture (**Figure 3**).

Figure 5. Rat β Air devices containing ~2,400 IEQ/device at different densities and supplied with various O₂ concentrations (blue highlights) were implanted in STZ-induced diabetic rats. Each line represents blood glucose concentrations of another animal, except when otherwise indicated. Arrows represent time of elective retrieval of the device.

Pig devices containing islets from Lewis rats were implanted in mini-pigs with STZ-induced diabetes. The gas mixture (21-95% O₂, 5% CO₂ and the rest N₂) was daily replenished by trans-cutaneous injection via the access ports, and blood glucose levels were measured. During the implantation period, near normoglycemia was achieved and weight gain was observed. After explantation, blood glucose levels returned to the diseased state and the animals started losing weight (Figure 6).

Figure 6. Pig β Air devices containing ~6,500 IEQ/Kg body weight were implanted in STZ-induced diabetic mini-pigs (n = 4). Light blue represents mean blood glucose levels with SD. Blue diamonds represent the mean weight of the animals.

Conclusions

Preclinical results in 3 animal models proved the ability of the β Air device to:

Support efficient replenishing with O₂ for continued function of the donor

partial pressure. Right: A cross-section of a highly dense slab (4,800 islet equivalent [IEQ]/cm²).

islets at different densities

 Protect isogenic, allogenic, and xenogeneic implanted cells from the host immune system without any immunosuppressive drugs
Achieve near-normal glucose levels in 3 diabetic animals models

Barkai U et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transpl. 22: 1463-1476 (2013).
Neufeld T et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 8: e70150 (2013).