ONLINE-TUNED MODEL BASED COMPOUND CONTROLLER FOR BLOOD GLUCOSE REGULATION IN TYPE 1 DIABETIC PATIENT

Arpíta Bhattacharjee¹, Arvínd Easwaran¹, Melvín Khee-Shíng Leow^{1,2}, Namjoon Cho¹

¹ Nanyang Technological University (Singapore)

² Tan Tock Seng Hospital, Singapore Institute for Clinical Sciences, Duke-NUS Graduate Medical School, Lee Kong Chian School of Medicine-Imperial College London (Singapore)

□ A major concern of fully-automated Artificial Pancreas (AP) system is the prediction of optimal insulin dose without patients' intervention in the presence of disturbances (e.g., meals).

□ A fully-automated control algorithm is required to develop such an AP system that automatically reacts to disturbances as well as changes in patient dynamics.

Scenarios	Simulation time (hours)	Start time of Simulation	Number of meals	Meal disturbances
Scenario 1 (Validation of the controller: nominal scenario)	24	4:00pm	4	50gms at 6:30 p.m. 50gms at 7:00 a.m. 15gms at 10:30 a.m. 15gms at 1:30 p.m.
Scenario 2 (Robustness analysis under variations in insulin sensitivity)	12	12:00pm	1	80 <i>gms</i> at 1:00 p.m.

Advantages of online-tuned IMC over offline-tuned IMC (Scenario 1)

Performance metrics	Offline-tuned IMC	Online-tuned IMC
Mean	143.48	146.49
% time in normoglycemia (70-180 <i>mg/dl</i>)	71.55	72.32
% time in tight target (80-140 mg/dl)	51.99	53.39
% of time below 70mg/dl	3.25	1.25
% of time above 180mg/dl	25.18	26.41
Number of patients in Hypoglycemia (< 70 <i>mg/dl</i>)	1	1

□ Offline-tuned models are developed using a 24h scenario comprising 3 meal disturbances: 75gms at 7:00a.m., 75gms at 1:00p.m., and 50gms at 8:00p.m.

Online-tuned IMC has a much better performance than offline-tuned IMC in handling variations in meal disturbances; on an average patients experience hypoglycemia under online-tuned IMC only 1.25% of the time when compared to 3.25% in the case of offline-tuned IMC.

Scenarios for evaluation of online-tuned compound IMC controller

□ Volterra models are developed using Recursive Least Squares (RLS) algorithm.

□ Frequency domain Volterra kernels called Volterra Transfer Functions (VTF) are then used to develop IMC.

□ In offline-tuned IMC models are fixed using previously collected data, whereas in online-tuned IMC models are adapted online based on measured data.

Online-tuned compound IMC controller:

□ To overcome the shortcoming of slow subcutaneous insulin action causing hyperglycemia with online-tuned IMC, we have integrated an automatic meal detection module such that an enhanced version of IMC with additional gain (eIMC) operates whenever a meal is detected.

□ In this compound controller, eIMC will operate only when the Glucose Rate Increase Detector (GRID) of the meal detection module is positive. Otherwise the conventional online-tuned IMC controller will operate.

□ GRID is used to detect meal disturbances by estimating the Rate of Change (ROC) of glucose level.

 \Box Controllers C₁ (conventional online-tuned IMC) and C₂ (eIMC) are developed

Results for Scenario 1

Performance metrics	IMC	Compound IMC
Mean	146.49	146.3
% time in normoglycemia (70-180 <i>mg/dl</i>)	72.32	77.63
% time in tight target (80-140 <i>mg/dl</i>)	53.39	54.12
% of time in normoglycemia during overnight period	95.62	100
% of time in tight target during overnight period	91.73	100
% of time below 70mg/dl	1.25	0
% of time above 180mg/dl	26.41	22.36
Number of patients in hypoglycemia (BG70 <i>mg/dl</i>)	1	0
Maximum Insulin infusion (U/h)	1.77	3.6

Patients do not experience any hypoglycemia, even during the overnight period.

Results for Scenario 2

Performance metrics	+20% insulin sensitivity		-20% insulin sensitivity	
	IMC	Compound IMC	IMC	Compound IMC
Mean	150	124.41	173.6	141.7
% time in normoglycemia (70-180 mg/dl)	63.73	85.71	59.04	83.23
% time in tight target (80-140 mg/dl)	46.8	78.47	47.61	76.29
% of time below 70mg/dl	4.2	1.81	1.95	0
% of time above 180mg/dl	31.9	12.47	39	16.76

Compound IMC controller significantly reduces hyperglycemia; on an average, patients experience hyperglycemia under compound IMC only 12.47% (16.76%) of the time with +20% (-20%) insulin sensitivity when compared to 31.9% (39%) in the case of IMC.

Conclusions

□ We have designed a fully-automated compound model based controller, using onlinetuned IMC along with meal detection module.

□ Online adaptation of the model enables the controller to better handle variabilities in patient dynamics and meal disturbance conditions.

□ The combination of compound control strategy with meal detection module is able to manage both hyper- and hypoglycemic events well.

· \/TE			· · · · · · · · / / · · · /	2 1 1 1	
		hant to cc	ntrallar ($10 \text{ th} 0^{-1}$	10CLCD
	e euuivai		nu une (JEVISII.
					10010111

