

Neurophysiologic study of patients with Parkinson's disease and patients with persistent pain after spinal surgery

Masanaka Takeda¹, Fumiaki Okada², Hisao Tachibana³, Syuhei Kasama¹, Hiroo Yoshikawa¹ ¹ Department of Neurology, Hyogo College of Medicine, Nishinomiya, Japan ² Department of Orthopedic Surgery, Harima Hospital ³ Nishinomiya Kyoritsu Neurosurgical Hospital

[Background]

in 40 to 85 % of patients with PD [1-3]. Pain is one of the most troublesome symptoms of PD, and is associated with reduced health-related quality of life. PD has been shown to exhibit abnormal central pain processing, although underlying mechanisms are not fully understood.

In general, it is difficult to evaluate the degree of pain objectively, while pain- Fig. 1 Picture of a needle (left) and a schematic drawing of its insertion in the related evoked potentials have been considered to be one of the reliable epidermis (right) by Inui et al. [4] objective assessments of pain processing. Pain-related evoked potentials may be recorded by laser, heat and mechanical stimulations. Recently, Inui et al. [4] To produce a pain stimulus, intra-epidermal electrical stimulation, which selectively recorded evoked potentials induced by epidermal electrical stimulation using a thin needle electrode, which can specifically activate the Aδ fiber-mediated pain A pushpin-type needle electrode with a needle tip 0.2 mm in length was used. mechanism.

(Objective)

The aim of this study is to investigate dysfunction of the central pathway of pain in patients with PD and patients with persistent pain after spinal surgery using pain-related evoked potentials induced by intra-epidermal electrical stimulation.

Table 1	Subject
	Age (ye

Table 2 Clinical characteristic of PD

able I Subject		TUDIO E OIITIO		
Age(year) Gender(M/F) I	PI	O with pain	without pain
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5 8 4 /3	Duration (years) Hoehn-Yahr stage UPDRS SDS MMSE	4.9 ± 3.1 3.3 ± 0.4 43.5 ± 14.7 $42.9\pm7.9^*$ 29.3 ± 1.0	6.8 ± 3.4 3.4 ± 0.7 52.0 ± 25.3 34.3 ± 6.3 28.9 ± 2.1
ata are presented as mean \pm S.D.	4	L-dopa (mg/day) : *p<0.05 compared UPDRS:Unified P SDS:Self-rating [MMSE:Mini Menta	330±168.8 to PD patier arkinson's Dise Depression Scal al State Examin	431.3±171.0 Its without pai ase Rating Scale e(Zung) ation

Table 3 Patients with persistent pain after surgery

ase	Diagnosis (after surgery)	Gender	Age	Parts of pain
1)	Lumber herniated intervertebral disc	male	73	Left upper leg, both lower legs
2	Lumber herniated intervertebral disc	male	70	both lower legs
3	Lumber herniated intervertebral disc	female	68	both lower legs
4	Lumber pseudo arthrosis	female	70	both lower legs
5	Cervical herniated intervertebral disc	male	65	both upper, lower legs
6	Cervical ossification of posterior longitudinal ligament	female	71	both upper, lower legs

[Methods]

Pain is a common non-motor symptom of Parkinson's disease (PD), occurring Pain-related evoked potentials induced by Intra-epidermal electrical stimulation

stimulates A\delta fibers, was applied to the second digit on each of the 4 limbs. The stimulus was a square-wave pulse.

Interval was 3 - 10 sec (at random). Duration was 0.5ms.

Intensity was 0.12 - 0.6 mA (3 times the pain threshold for each subject). Evoked potentials were recorded from the vertex (Cz) and referenced to a linked earlobe electrode of the International 10-20 system.

The impedance for each electrode was < 5kΩ.

5 responses were collected and averaged per trial, and 2 trials were recorded.

The protocol of our study was approved by the Ethics Committee of Hyogo College of Medicine, and written informed consent performed from controls or patients.

[Results]

PD patient with pain PD patient without pain (male,53ys) (female,73ys)

Patient with persistent Control subject pain (male,65ys) (male.70vs)

Fig. 2 Pain-related evoked potentials in a control subject and patients.

A: right hand, B: left hand, C: right leg, D: left leg Major negative (N1) and positive (P1) deflections were observed after each stimulation. N1/P1 amplitude was measured between N1 and P1 peaks. Note the reduced N1/P1 amplitude in patients with PD and a patient with persistent pain compared with a control subject.

Table 4 N1	/P1 a	mplitudes	and N1	, P1	latencies	in	controls	and	patient
------------	-------	-----------	--------	------	-----------	----	----------	-----	---------

N1/P1	amplitude(µV)	N1 latency(ms)	P1 latency(ms)				
upper limbs	35.8±12.4	189.6±15.2	299.8±18.2				
lower Limbs	31.2±9.8	231.9 ± 33.2	347.7 ± 24.5				
upper limbs	25.2±9.9*	202.1 ± 29.6	313.3 ± 35.2				
lower Limbs	24.5±9.8*	242.3 ± 29.7	354.3±37.0				
upper limbs	23.2±7.7*	198.1 ± 21.8	297.1 ± 23.4				
lower Limbs	20.2±8.2*	232.1 ± 36.8	324.7±36.6				
Patients with persistent pain							
upper limbs	19.5±7.1*	176.9 ± 31.2	296.6±29.2				
lower Limbs	20.0±7.5*	231.5 ± 30.2	348.1±38.2				
	N1/P1 upper limbs lower Limbs upper limbs lower Limbs lower Limbs sistent pain upper limbs lower Limbs	N1/P1 amplitude(µV) upper limbs 35.8±12.4 lower Limbs 31.2±9.8 upper limbs 25.2±9.9* lower Limbs 24.5±9.8* upper limbs 23.2±7.7* lower Limbs 20.2±8.2* sistent pain upper limbs upper Limbs 20.2±8.2* lower Limbs 20.2±7.1* lower Limbs 20.0±7.5*	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				

*p<0.01 compared to normal controls.

Discussion

The N1/P1 amplitudes were significantly lower in PD patients with or without pain and patients with persistent pain after surgery compared with controls. Although the precise origin of the N1/P1 complex remains uncertain, there is evidence that several brain structures devoted to the processing of nociceptive input, including the cingulate cortex and the insula [5,6], contribute to N1/P1 complex generation. The N1/P1 reduction in patients with PD might reflect nigrostriatal impairment leading to dysfunction of inhibitory control exerted by the basal ganglia on the areas of the CNS devoted to pain stimulation. In addition, there was no difference in N1/P1 amplitudes between patients with PD and patients with persistent pain after surgery. These results may show the existence of abnormal central processing of pain in PD patients with or without pain, as well as patients with persistent pain after spinal surgery.

[Conclusion]

The present results may show the existence of abnormal central processing of pain in PD patients with or without pain, as well as patients with persistent pain after spinal surgery.

References

[1] Beiske AG, et al. Pain 2009;141: 173-7. [2] Barone P. et al. Mov Disord 2009;24: 1641-9. [3] Rana AQ, et al. Clin Neurol Neurosurg 2013;115:2313-7. [4] Inui K, et al. Pain 96:247-252. 2002. [5] Inui K. et al. Clin. Neurophysiol 113, 298-304, 2002. [6] Tinazzi M. et al. Mov. Disord 25, 213-220, 2010.