LOW BACK PAIN RELIEF WITH A NEW 32-CONTACT SURGICAL LEAD AND NEURAL TARGETING ALGORITHM

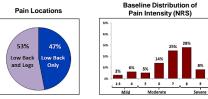
Julie Pilitsis¹, Giancarlo Barolat², Joshua Rosenow³, James Brennan⁴, Alexander Bailey⁵, Jeffrey Epstein⁶, Blake Hammond⁷, Clark Metzger⁷, Dat Huynh⁸, Kristen Lechleiter⁸, Nitzan Mekel-Bobrov⁸

Albany Medical Center, Albany, NY, United States. 2. Barolat Neuroscience, Denver, CO, United States. 3. Northwestern University School of Medicine, Chicago, IL, United States
 Florence Neurosurgery and Spine, Florence, SC, United States. 5. Precision Spine and Orthopedic Specialists, Overland Park, KS, United States. 6. St. Catherine of Siena Medical Center, Smithtown, NY, United States
 West Florida Pain Group, Pensacola, FL, United States 8. Boston Scientific Corporation, Valencia, CA, United States.

BACKGROUND

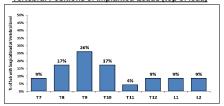
Spinal cord stimulation (SCS) has become standard in treating lumbosacral radiculopathy, with reports of up to 70% leg-pain relief.¹ Historically, however, SCS has been more challenging for low-back pain, attributed to less representation of the back within dorsal columns, resulting in less availability to superficial stimulation.² It has been postulated that advances in surgical leads and programming capabilities would result in increasingly effective low-back pain relief.³ The best example of this is a recently introduced 32-contact surgical lead. Coupled with 32-contact multiple independent current control (MICC) and anatomically-based stimulation targeting algorithms, this lead allows for patient-specific programming optimization previously not possible. We present here a multi-center, consecutive, observational study of experience with the new 32-contact surgical lead when using advanced Neural Targeting SCS. We examine data from 100 implanted patients, including baseline medical history, procedural information, pain reduction and response rate.

METHODS


Study Design	Multi-center, consecutive, observational	
Study Device	32 contact surgical lead using anatomically guided neural targeting advanced SCS	
Sample Size	100 implanted subjects	
Number of Sites	Up to 10 sites	
Follow-up Duration	24 months (currently at 12 months post-implant)	
Key Inclusion Criteria	Real-world cohort –on label treatment for back with or without leg pain.	
Study Assessments	Baseline information: demographics, diagnosis, pain location	
	Procedural information: lead configuration, programming parameters	
	Clinical outcomes:	
	 Pain intensity (0-10 numerical rating scale - NRS) 	
	 Activities of Daily Living 	
	- Medication Intake	

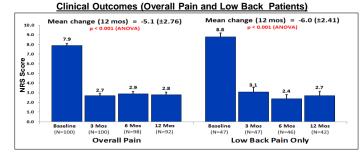
Baseline Information

Age (mean [SD]): 61 [33.0]
Gender: 51% Female, 49% Male


Condon of yor official, he you have

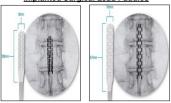
Mean baseline pain (0-10 NRS): 7.2 (SD 1.84)

Procedural Information


Placement of surgical leads was distributed between T7 and L2, with the peak at T9 (26%) and tail-end of the distribution in the lumbar region (18%). Vertebral Positions of Implanted Leads (too of lead)

IPG Programming Parameters

il e l'regramming l'arameters	
	Mean (SD)
# of active contacts	15 (4.4)
# of anodes	7 (2.7)
# of cathodes	5 (1.6)
Frequency (Hz)	59 (19.9)


RESULTS

Clinical Outcomes (Responder Rate)

Implanted Surgical Lead Paddles

REFERENCES

- Stidd DA., Rivero S., Weinand ME., "Spinal cord stimulation with implanted epidural paddle lead relieves chronic axial low back pain." J. Pain Res. 2014. 12;7465-70.
- Oakley JC. Espinosa F., Bothe H., McKean J., Allen P., Burchiel K., Quartey G., Spincemaille G., Nutrin B., Gielen F., King G., Holsheimer J. "Transvese tripolar spinal cord stimulation: results of an international multicenter study." *Neuromodulation*. 2006. 9(3):192-203.
- Kinfe TM., Schu S., Quack FJ., Wille C., Vesper J. "Percutaneous implanted paddle lead for spinal cord stimulation: technical considerations and long-term follow-up." *Neuromodulation*. 2012. 15(4):402-7.

CONCLUSIONS

This multicenter cohort of 100 patients implanted with a 32-contact paddle and using Neural Targeting SCS out to 12 months post-implant demonstrated:

- \bullet Significant back pain reduction, equivalent to overall pain reduction (p < 0.001)
- Response Rate of 83.1% for low back pain alone
 Improvements in activities of daily living and reduction in pain medications have been observed

Further study is on-going in a large-scale outcomes registry.